2019-11-13 23:18:33 +00:00
|
|
|
# A script to use Google Cloud Vision to OCR/parse/mangle Collections label-images
|
|
|
|
# Note!
|
2019-11-29 20:12:45 +00:00
|
|
|
# - this may take >30 seconds per label-image
|
2019-11-13 23:18:33 +00:00
|
|
|
# - running >1000 API calls/month incurs a fee
|
|
|
|
# (c) 2019 The Field Museum - MIT License (https://opensource.org/licenses/MIT)
|
|
|
|
# https://github.com/fieldmuseum/Collections-OCR
|
|
|
|
|
|
|
|
library(googleCloudVisionR) # NOTE - requires API Key / Service Account
|
|
|
|
library(tidyr)
|
|
|
|
library(readr)
|
|
|
|
library(stringr)
|
2019-11-29 23:10:51 +00:00
|
|
|
# library(magick)
|
2019-11-13 23:18:33 +00:00
|
|
|
|
|
|
|
# get list of local JPG & JPEG image files [REVERT]
|
|
|
|
imagelist <- list.files(path = "images/", pattern = ".jp|.JP")
|
|
|
|
imagenames <- gsub(".jp.*|.JP.*", "", imagelist)
|
|
|
|
|
|
|
|
|
|
|
|
# # Prompt user for input/output batch directory names?
|
|
|
|
# image_dir <- readline("Paste the path for the image directory: ")
|
|
|
|
|
|
|
|
|
|
|
|
# Retrieve OCR text ####
|
|
|
|
|
|
|
|
# Setup table for OCRed text
|
2019-11-29 16:52:44 +00:00
|
|
|
imagesOCR <- data.frame("image" = rep("", NROW(imagelist)),
|
2019-11-29 20:12:45 +00:00
|
|
|
"imagesize_MB" = rep("", NROW(imagelist)),
|
|
|
|
"ocr_start" = rep("", NROW(imagelist)),
|
|
|
|
"ocr_duration" = rep("", NROW(imagelist)),
|
2019-11-29 16:52:44 +00:00
|
|
|
"line_count" = rep("", NROW(imagelist)),
|
|
|
|
"text" = rep("", NROW(imagelist)),
|
2019-11-13 23:18:33 +00:00
|
|
|
stringsAsFactors = F)
|
|
|
|
|
|
|
|
imagesOCR$line_count <- as.integer(imagesOCR$line_count)
|
|
|
|
|
|
|
|
|
|
|
|
# setup output dir
|
|
|
|
# # add image_dir if use prompt above
|
|
|
|
if (!dir.exists("ocr_text")) { # paste0(image_dir, "_out")
|
|
|
|
dir.create("ocr_text") # paste0(image_dir, "_out")
|
2019-11-29 20:12:45 +00:00
|
|
|
print("output directory created")
|
2019-11-13 23:18:33 +00:00
|
|
|
} else {
|
2019-11-29 20:12:45 +00:00
|
|
|
print("output directory already exists")
|
2019-11-13 23:18:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# Loop through each label-image
|
|
|
|
for (i in 1:NROW(imagelist)) {
|
|
|
|
|
|
|
|
# # If files are over 20MB, uncomment this to lower quality + avoid error?
|
|
|
|
# ### NOTE! This will overwrite image with lower-quality file.
|
|
|
|
#
|
|
|
|
# if (file.info(paste0("images/", imagelist[i]))$size > 20000000) {
|
|
|
|
# image_write(image_read(paste0("images/", imagelist[i])),
|
|
|
|
# path = paste0("images/", imagelist[i]),
|
|
|
|
# quality = 80)
|
|
|
|
|
|
|
|
# OCR image
|
2019-11-29 20:12:45 +00:00
|
|
|
# ### NOTE! This can take over ~30s per image
|
|
|
|
print(paste(i, "- starting OCR -", Sys.time()))
|
|
|
|
|
|
|
|
imagesOCR$ocr_start[i] <- as.character(Sys.time())
|
|
|
|
start <- Sys.time()
|
|
|
|
|
2019-11-13 23:18:33 +00:00
|
|
|
ocr_list <- gcv_get_image_annotations(imagePaths = paste0("images/", imagelist[i]),
|
2019-11-29 20:12:45 +00:00
|
|
|
feature = "DOCUMENT_TEXT_DETECTION") #,
|
|
|
|
# savePath = paste0("ocr_text/",
|
|
|
|
# imagenames[i], "_text.csv"))
|
|
|
|
|
|
|
|
print(paste(i, "- finishing OCR -", Sys.time()))
|
|
|
|
end <- Sys.time()
|
2019-11-13 23:18:33 +00:00
|
|
|
|
|
|
|
# Add raw text to dataframe
|
2019-11-29 20:12:45 +00:00
|
|
|
imagesOCR$text[i] <- ocr_list$description
|
2019-11-13 23:18:33 +00:00
|
|
|
|
2019-11-29 20:12:45 +00:00
|
|
|
# Add OCR duration (in seconds), & text-lines per image, filename, filesize (in MB)
|
|
|
|
imagesOCR$ocr_duration[i] <- as.integer(end) - as.integer(start)
|
|
|
|
imagesOCR$line_count[i] <- str_count(ocr_list$description, "\n+")
|
2019-11-13 23:18:33 +00:00
|
|
|
imagesOCR$image[i] <- imagelist[i]
|
2019-11-29 20:12:45 +00:00
|
|
|
imagesOCR$imagesize_MB[i] <- round(file.info(paste0("images/",
|
|
|
|
imagelist[i]))$size
|
|
|
|
/ 1000000, 2)
|
2019-11-13 23:18:33 +00:00
|
|
|
|
|
|
|
# show progress
|
2019-11-29 20:12:45 +00:00
|
|
|
print(paste(i, "- done -", Sys.time()))
|
2019-11-13 23:18:33 +00:00
|
|
|
|
|
|
|
# rate limit to max of 240/min (Vision API limit = 1800/min)
|
|
|
|
Sys.sleep(0.25)
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# split text lines to separate columns
|
|
|
|
ocrText <- separate(imagesOCR, text,
|
|
|
|
into = paste0("Line",
|
|
|
|
seq(1:max(imagesOCR$line_count, na.rm = T))),
|
|
|
|
# into = seq(1:20), # if need consistent NCOL
|
|
|
|
sep = "(\n)+",
|
|
|
|
extra = "merge", fill = "right")
|
|
|
|
|
|
|
|
|
|
|
|
# export CSV
|
|
|
|
write.csv(ocrText,
|
|
|
|
paste0("ocrText-",
|
|
|
|
gsub("\\s+|:", "", Sys.time()),
|
|
|
|
# image_dir,
|
|
|
|
".csv"),
|
|
|
|
na = "",
|
|
|
|
row.names = F)
|