123 lines
3.5 KiB
R
123 lines
3.5 KiB
R
# A script to use Google apps to OCR/parse/mangle Collections label-images
|
|
# Note - this may take a few seconds per label-image
|
|
# (c) 2019 The Field Museum - MIT License (https://opensource.org/licenses/MIT)
|
|
# https://github.com/fieldmuseum/Collections-OCR
|
|
|
|
library(googledrive)
|
|
library(tidyr)
|
|
library(readr)
|
|
library(stringr)
|
|
|
|
|
|
# get list of local JPG & JPEG image files [REVERT]
|
|
imagelist <- list.files(path = "images/", pattern = ".jp|.JP")
|
|
imagenames <- gsub(".jp.*|.JP.*", "", imagelist)
|
|
|
|
|
|
# NOTE - update path to appropriate google folder
|
|
googleFolder <- "https://drive.google.com/drive/folders/1fOI5JC1naQtfBZ2mXlWFlBOq2bKN17KA"
|
|
# googleFolder <- readline("Paste the URL to a googledrive here: ")
|
|
|
|
|
|
# Upload & OCR ####
|
|
|
|
# Loop through each label-image
|
|
for (i in 1:NROW(imagelist)) {
|
|
|
|
# Setup Google Doc for image
|
|
drive_upload(media = paste0("images/", imagelist[i]),
|
|
path = as_id(googleFolder),
|
|
name = paste0(imagenames[i], "_text"),
|
|
type = "document",
|
|
overwrite = FALSE)
|
|
|
|
print(paste(i, " - ", Sys.time()))
|
|
|
|
}
|
|
|
|
|
|
# get list of OCR text files
|
|
filelist <- drive_ls(path = as_id(googleFolder),
|
|
recursive = FALSE)
|
|
|
|
textlist <- filelist[grepl("_text", filelist$name)==TRUE,]
|
|
|
|
|
|
# Retrieve OCR text ####
|
|
|
|
# Setup table for OCRed text
|
|
imagesOCR <- data.frame("image" = rep("", NROW(textlist)),
|
|
"line_count" = rep("", NROW(textlist)),
|
|
"text" = rep("", NROW(textlist)),
|
|
stringsAsFactors = F)
|
|
|
|
imagesOCR$line_count <- as.integer(imagesOCR$line_count)
|
|
|
|
if (!dir.exists("ocr_text")) {
|
|
dir.create("ocr_text")
|
|
} else {
|
|
print("'ocr_text' directory exists")
|
|
}
|
|
|
|
# Download the OCR'ed label-images
|
|
for (i in 1:NROW(textlist)) {
|
|
|
|
# Setup Google Doc for image
|
|
dllist <- drive_download(file = as_id(textlist$id[i]),
|
|
path = paste0("ocr_text/", textlist$name),
|
|
type = "txt",
|
|
overwrite = FALSE)
|
|
|
|
# OCR the image to text
|
|
imagesOCR$text[i] <- read_file(dllist$local_path)
|
|
|
|
# include filename & count of lines in row
|
|
imagesOCR$image[i] <- imagelist[i]
|
|
imagesOCR$line_count[i] <- str_count(ocrText, "\n+")
|
|
|
|
# show progress
|
|
print(paste(i, " - ", Sys.time()))
|
|
|
|
}
|
|
|
|
|
|
# # loop through each label-image
|
|
# for (i in 1:NROW(imagelist)) {
|
|
#
|
|
# # # Setup Google Doc for image
|
|
# # drive_put(media = "images/PE78981_label.jpg",
|
|
# # path = as_id("https://drive.google.com/drive/folders/1fOI5JC1naQtfBZ2mXlWFlBOq2bKN17KA"),
|
|
# # name = "test_text",
|
|
# # type = "document")
|
|
#
|
|
# # OCR the image to text
|
|
# ocrText <- image_read(paste0("images/", imagelist[i])) %>%
|
|
# image_ocr(language = c("eng", "lat", "deu"))
|
|
# imagesOCR$text[i] <- ocrText
|
|
#
|
|
# # include filename & count of lines in row
|
|
# imagesOCR$image[i] <- imagelist[i]
|
|
# imagesOCR$line_count[i] <- str_count(ocrText, "\n+")
|
|
#
|
|
# # show progress
|
|
# print(paste(i, " - ", Sys.time()))
|
|
#
|
|
# }
|
|
|
|
|
|
# split text lines to separate columns
|
|
ocrText <- separate(imagesOCR, text,
|
|
into = paste0("Line",
|
|
seq(1:max(imagesOCR$line_count, na.rm = T))),
|
|
# into = seq(1:20), # if need consistent NCOL
|
|
sep = "(\n)+",
|
|
extra = "merge", fill = "right")
|
|
|
|
|
|
# export CSV
|
|
write.csv(ocrText,
|
|
paste0("ocrText-",
|
|
gsub("\\s+|:", "", Sys.time()),
|
|
".csv"),
|
|
na = "",
|
|
row.names = F) |