Collections-OCR/ocrCloudVision.R

93 lines
3.0 KiB
R

# A script to use Google Cloud Vision to OCR/parse/mangle Collections label-images
# Note!
# - this may take a few seconds per label-image
# - running >1000 API calls/month incurs a fee
# (c) 2019 The Field Museum - MIT License (https://opensource.org/licenses/MIT)
# https://github.com/fieldmuseum/Collections-OCR
library(googleCloudVisionR) # NOTE - requires API Key / Service Account
library(tidyr)
library(readr)
library(stringr)
library(magick)
# get list of local JPG & JPEG image files [REVERT]
imagelist <- list.files(path = "images/", pattern = ".jp|.JP")
imagenames <- gsub(".jp.*|.JP.*", "", imagelist)
# # Prompt user for input/output batch directory names?
# image_dir <- readline("Paste the path for the image directory: ")
# Retrieve OCR text ####
# Setup table for OCRed text
imagesOCR <- data.frame("image" = rep("", NROW(imagelist)),
"line_count" = rep("", NROW(imagelist)),
"text" = rep("", NROW(imagelist)),
stringsAsFactors = F)
imagesOCR$line_count <- as.integer(imagesOCR$line_count)
# setup output dir
# # add image_dir if use prompt above
if (!dir.exists("ocr_text")) { # paste0(image_dir, "_out")
dir.create("ocr_text") # paste0(image_dir, "_out")
} else {
print("output directory exists")
}
# Loop through each label-image
for (i in 1:NROW(imagelist)) {
# # If files are over 20MB, uncomment this to lower quality + avoid error?
# ### NOTE! This will overwrite image with lower-quality file.
#
# if (file.info(paste0("images/", imagelist[i]))$size > 20000000) {
# image_write(image_read(paste0("images/", imagelist[i])),
# path = paste0("images/", imagelist[i]),
# quality = 80)
# OCR image
# CHECK/FIX THIS FXN ####
ocr_list <- gcv_get_image_annotations(imagePaths = paste0("images/", imagelist[i]),
feature = "DOCUMENT_TEXT_DETECTION",
savePath = paste0("ocr_text/",
imagenames[i], "_text.csv"))
# Add raw text to dataframe
imagesOCR$text[i] <- read_file(ocr_list$local_path) # CHECK/FIX THIS PATH ####
# Add filename & count of lines in row
imagesOCR$image[i] <- imagelist[i]
imagesOCR$line_count[i] <- str_count(ocr_list$local_path, "\n+")
# show progress
print(paste(i, " - ", Sys.time()))
# rate limit to max of 240/min (Vision API limit = 1800/min)
Sys.sleep(0.25)
}
# split text lines to separate columns
ocrText <- separate(imagesOCR, text,
into = paste0("Line",
seq(1:max(imagesOCR$line_count, na.rm = T))),
# into = seq(1:20), # if need consistent NCOL
sep = "(\n)+",
extra = "merge", fill = "right")
# export CSV
write.csv(ocrText,
paste0("ocrText-",
gsub("\\s+|:", "", Sys.time()),
# image_dir,
".csv"),
na = "",
row.names = F)