winamp/Src/external_dependencies/openmpt-trunk/soundlib/IntMixer.h

399 lines
13 KiB
C
Raw Permalink Normal View History

2024-09-24 12:54:57 +00:00
/*
* IntMixer.h
* ----------
* Purpose: Fixed point mixer classes
* Notes : (currently none)
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#pragma once
#include "openmpt/all/BuildSettings.hpp"
#include "Resampler.h"
#include "MixerInterface.h"
#include "Paula.h"
OPENMPT_NAMESPACE_BEGIN
template<int channelsOut, int channelsIn, typename out, typename in, size_t mixPrecision>
struct IntToIntTraits : public MixerTraits<channelsOut, channelsIn, out, in>
{
typedef MixerTraits<channelsOut, channelsIn, out, in> base_t;
typedef typename base_t::input_t input_t;
typedef typename base_t::output_t output_t;
static MPT_CONSTEXPRINLINE output_t Convert(const input_t x)
{
static_assert(std::numeric_limits<input_t>::is_integer, "Input must be integer");
static_assert(std::numeric_limits<output_t>::is_integer, "Output must be integer");
static_assert(sizeof(out) * 8 >= mixPrecision, "Mix precision is higher than output type can handle");
static_assert(sizeof(in) * 8 <= mixPrecision, "Mix precision is lower than input type");
return static_cast<output_t>(x) * (1<<(mixPrecision - sizeof(in) * 8));
}
};
typedef IntToIntTraits<2, 1, mixsample_t, int8, 16> Int8MToIntS;
typedef IntToIntTraits<2, 1, mixsample_t, int16, 16> Int16MToIntS;
typedef IntToIntTraits<2, 2, mixsample_t, int8, 16> Int8SToIntS;
typedef IntToIntTraits<2, 2, mixsample_t, int16, 16> Int16SToIntS;
//////////////////////////////////////////////////////////////////////////
// Interpolation templates
template<class Traits>
struct AmigaBlepInterpolation
{
SamplePosition subIncrement;
Paula::State &paula;
const Paula::BlepArray &WinSincIntegral;
const int numSteps;
unsigned int remainingSamples = 0;
MPT_FORCEINLINE AmigaBlepInterpolation(ModChannel &chn, const CResampler &resampler, unsigned int numSamples)
: paula{chn.paulaState}
, WinSincIntegral{resampler.blepTables.GetAmigaTable(resampler.m_Settings.emulateAmiga, chn.dwFlags[CHN_AMIGAFILTER])}
, numSteps{chn.paulaState.numSteps}
{
if(numSteps)
{
subIncrement = chn.increment / numSteps;
// May we read past the start or end of sample if we do partial sample increments?
// If that's the case, don't apply any sub increments on the source sample if we reached the last output sample
// Note that this should only happen with notes well outside the Amiga note range, e.g. in software-mixed formats like MED
const int32 targetPos = (chn.position + chn.increment * numSamples).GetInt();
if(static_cast<SmpLength>(targetPos) > chn.nLength)
remainingSamples = numSamples;
}
}
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const MPT_RESTRICT inBuffer, const uint32 posLo)
{
if(--remainingSamples == 0)
subIncrement = {};
SamplePosition pos(0, posLo);
// First, process steps of full length (one Amiga clock interval)
for(int step = numSteps; step > 0; step--)
{
typename Traits::output_t inSample = 0;
int32 posInt = pos.GetInt() * Traits::numChannelsIn;
for(int32 i = 0; i < Traits::numChannelsIn; i++)
inSample += Traits::Convert(inBuffer[posInt + i]);
paula.InputSample(static_cast<int16>(inSample / (4 * Traits::numChannelsIn)));
paula.Clock(Paula::MINIMUM_INTERVAL);
pos += subIncrement;
}
paula.remainder += paula.stepRemainder;
// Now, process any remaining integer clock amount < MINIMUM_INTERVAL
uint32 remainClocks = paula.remainder.GetInt();
if(remainClocks)
{
typename Traits::output_t inSample = 0;
int32 posInt = pos.GetInt() * Traits::numChannelsIn;
for(int32 i = 0; i < Traits::numChannelsIn; i++)
inSample += Traits::Convert(inBuffer[posInt + i]);
paula.InputSample(static_cast<int16>(inSample / (4 * Traits::numChannelsIn)));
paula.Clock(remainClocks);
paula.remainder.RemoveInt();
}
auto out = paula.OutputSample(WinSincIntegral);
for(int i = 0; i < Traits::numChannelsOut; i++)
outSample[i] = out;
}
};
template<class Traits>
struct LinearInterpolation
{
MPT_FORCEINLINE LinearInterpolation(const ModChannel &, const CResampler &, unsigned int) { }
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const MPT_RESTRICT inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const typename Traits::output_t fract = posLo >> 18u;
for(int i = 0; i < Traits::numChannelsIn; i++)
{
typename Traits::output_t srcVol = Traits::Convert(inBuffer[i]);
typename Traits::output_t destVol = Traits::Convert(inBuffer[i + Traits::numChannelsIn]);
outSample[i] = srcVol + ((fract * (destVol - srcVol)) / 16384);
}
}
};
template<class Traits>
struct FastSincInterpolation
{
MPT_FORCEINLINE FastSincInterpolation(const ModChannel &, const CResampler &, unsigned int) { }
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const MPT_RESTRICT inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const int16 *lut = CResampler::FastSincTable + ((posLo >> 22) & 0x3FC);
for(int i = 0; i < Traits::numChannelsIn; i++)
{
outSample[i] =
(lut[0] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
+ lut[1] * Traits::Convert(inBuffer[i])
+ lut[2] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
+ lut[3] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn])) / 16384;
}
}
};
template<class Traits>
struct PolyphaseInterpolation
{
const SINC_TYPE *sinc;
MPT_FORCEINLINE PolyphaseInterpolation(const ModChannel &chn, const CResampler &resampler, unsigned int)
{
#ifdef MODPLUG_TRACKER
// Otherwise causes "warning C4100: 'resampler' : unreferenced formal parameter"
// because all 3 tables are static members.
// #pragma warning fails with this templated case for unknown reasons.
MPT_UNREFERENCED_PARAMETER(resampler);
#endif // MODPLUG_TRACKER
sinc = (((chn.increment > SamplePosition(0x130000000ll)) || (chn.increment < SamplePosition(-0x130000000ll))) ?
(((chn.increment > SamplePosition(0x180000000ll)) || (chn.increment < SamplePosition(-0x180000000ll))) ? resampler.gDownsample2x : resampler.gDownsample13x) : resampler.gKaiserSinc);
}
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const MPT_RESTRICT inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const SINC_TYPE *lut = sinc + ((posLo >> (32 - SINC_PHASES_BITS)) & SINC_MASK) * SINC_WIDTH;
for(int i = 0; i < Traits::numChannelsIn; i++)
{
outSample[i] =
(lut[0] * Traits::Convert(inBuffer[i - 3 * Traits::numChannelsIn])
+ lut[1] * Traits::Convert(inBuffer[i - 2 * Traits::numChannelsIn])
+ lut[2] * Traits::Convert(inBuffer[i - Traits::numChannelsIn])
+ lut[3] * Traits::Convert(inBuffer[i])
+ lut[4] * Traits::Convert(inBuffer[i + Traits::numChannelsIn])
+ lut[5] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn])
+ lut[6] * Traits::Convert(inBuffer[i + 3 * Traits::numChannelsIn])
+ lut[7] * Traits::Convert(inBuffer[i + 4 * Traits::numChannelsIn])) / (1 << SINC_QUANTSHIFT);
}
}
};
template<class Traits>
struct FIRFilterInterpolation
{
const int16 *WFIRlut;
MPT_FORCEINLINE FIRFilterInterpolation(const ModChannel &, const CResampler &resampler, unsigned int)
{
WFIRlut = resampler.m_WindowedFIR.lut;
}
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const typename Traits::input_t * const MPT_RESTRICT inBuffer, const uint32 posLo)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
const int16 * const lut = WFIRlut + ((((posLo >> 16) + WFIR_FRACHALVE) >> WFIR_FRACSHIFT) & WFIR_FRACMASK);
for(int i = 0; i < Traits::numChannelsIn; i++)
{
typename Traits::output_t vol1 =
(lut[0] * Traits::Convert(inBuffer[i - 3 * Traits::numChannelsIn]))
+ (lut[1] * Traits::Convert(inBuffer[i - 2 * Traits::numChannelsIn]))
+ (lut[2] * Traits::Convert(inBuffer[i - Traits::numChannelsIn]))
+ (lut[3] * Traits::Convert(inBuffer[i]));
typename Traits::output_t vol2 =
(lut[4] * Traits::Convert(inBuffer[i + 1 * Traits::numChannelsIn]))
+ (lut[5] * Traits::Convert(inBuffer[i + 2 * Traits::numChannelsIn]))
+ (lut[6] * Traits::Convert(inBuffer[i + 3 * Traits::numChannelsIn]))
+ (lut[7] * Traits::Convert(inBuffer[i + 4 * Traits::numChannelsIn]));
outSample[i] = ((vol1 / 2) + (vol2 / 2)) / (1 << (WFIR_16BITSHIFT - 1));
}
}
};
//////////////////////////////////////////////////////////////////////////
// Mixing templates (add sample to stereo mix)
template<class Traits>
struct NoRamp
{
typename Traits::output_t lVol, rVol;
MPT_FORCEINLINE NoRamp(const ModChannel &chn)
{
lVol = chn.leftVol;
rVol = chn.rightVol;
}
};
struct Ramp
{
ModChannel &channel;
int32 lRamp, rRamp;
MPT_FORCEINLINE Ramp(ModChannel &chn)
: channel{chn}
{
lRamp = chn.rampLeftVol;
rRamp = chn.rampRightVol;
}
MPT_FORCEINLINE ~Ramp()
{
channel.rampLeftVol = lRamp; channel.leftVol = lRamp >> VOLUMERAMPPRECISION;
channel.rampRightVol = rRamp; channel.rightVol = rRamp >> VOLUMERAMPPRECISION;
}
};
// Legacy optimization: If chn.nLeftVol == chn.nRightVol, save one multiplication instruction
template<class Traits>
struct MixMonoFastNoRamp : public NoRamp<Traits>
{
typedef NoRamp<Traits> base_t;
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const MPT_RESTRICT outBuffer)
{
typename Traits::output_t vol = outSample[0] * base_t::lVol;
for(int i = 0; i < Traits::numChannelsOut; i++)
{
outBuffer[i] += vol;
}
}
};
template<class Traits>
struct MixMonoNoRamp : public NoRamp<Traits>
{
typedef NoRamp<Traits> base_t;
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const MPT_RESTRICT outBuffer)
{
outBuffer[0] += outSample[0] * base_t::lVol;
outBuffer[1] += outSample[0] * base_t::rVol;
}
};
template<class Traits>
struct MixMonoRamp : public Ramp
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const MPT_RESTRICT outBuffer)
{
lRamp += chn.leftRamp;
rRamp += chn.rightRamp;
outBuffer[0] += outSample[0] * (lRamp >> VOLUMERAMPPRECISION);
outBuffer[1] += outSample[0] * (rRamp >> VOLUMERAMPPRECISION);
}
};
template<class Traits>
struct MixStereoNoRamp : public NoRamp<Traits>
{
typedef NoRamp<Traits> base_t;
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &, typename Traits::output_t * const MPT_RESTRICT outBuffer)
{
outBuffer[0] += outSample[0] * base_t::lVol;
outBuffer[1] += outSample[1] * base_t::rVol;
}
};
template<class Traits>
struct MixStereoRamp : public Ramp
{
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &outSample, const ModChannel &chn, typename Traits::output_t * const MPT_RESTRICT outBuffer)
{
lRamp += chn.leftRamp;
rRamp += chn.rightRamp;
outBuffer[0] += outSample[0] * (lRamp >> VOLUMERAMPPRECISION);
outBuffer[1] += outSample[1] * (rRamp >> VOLUMERAMPPRECISION);
}
};
//////////////////////////////////////////////////////////////////////////
// Filter templates
template<class Traits>
struct NoFilter
{
MPT_FORCEINLINE NoFilter(const ModChannel &) { }
MPT_FORCEINLINE void operator() (const typename Traits::outbuf_t &, const ModChannel &) { }
};
// Resonant filter
template<class Traits>
struct ResonantFilter
{
ModChannel &channel;
// Filter history
typename Traits::output_t fy[Traits::numChannelsIn][2];
MPT_FORCEINLINE ResonantFilter(ModChannel &chn)
: channel{chn}
{
for(int i = 0; i < Traits::numChannelsIn; i++)
{
fy[i][0] = chn.nFilter_Y[i][0];
fy[i][1] = chn.nFilter_Y[i][1];
}
}
MPT_FORCEINLINE ~ResonantFilter()
{
for(int i = 0; i < Traits::numChannelsIn; i++)
{
channel.nFilter_Y[i][0] = fy[i][0];
channel.nFilter_Y[i][1] = fy[i][1];
}
}
// To avoid a precision loss in the state variables especially with quiet samples at low cutoff and high mix rate, we pre-amplify the sample.
#define MIXING_FILTER_PREAMP 256
// Filter values are clipped to double the input range
#define ClipFilter(x) Clamp<typename Traits::output_t, typename Traits::output_t>(x, int16_min * 2 * MIXING_FILTER_PREAMP, int16_max * 2 * MIXING_FILTER_PREAMP)
MPT_FORCEINLINE void operator() (typename Traits::outbuf_t &outSample, const ModChannel &chn)
{
static_assert(static_cast<int>(Traits::numChannelsIn) <= static_cast<int>(Traits::numChannelsOut), "Too many input channels");
for(int i = 0; i < Traits::numChannelsIn; i++)
{
const auto inputAmp = outSample[i] * MIXING_FILTER_PREAMP;
typename Traits::output_t val = static_cast<typename Traits::output_t>(mpt::rshift_signed(
Util::mul32to64(inputAmp, chn.nFilter_A0) +
Util::mul32to64(ClipFilter(fy[i][0]), chn.nFilter_B0) +
Util::mul32to64(ClipFilter(fy[i][1]), chn.nFilter_B1) +
(1 << (MIXING_FILTER_PRECISION - 1)), MIXING_FILTER_PRECISION));
fy[i][1] = fy[i][0];
fy[i][0] = val - (inputAmp & chn.nFilter_HP);
outSample[i] = val / MIXING_FILTER_PREAMP;
}
}
#undef ClipFilter
};
OPENMPT_NAMESPACE_END