winamp/Src/external_dependencies/openmpt-trunk/soundlib/Load_mo3.cpp

1985 lines
61 KiB
C++
Raw Permalink Normal View History

2024-09-24 12:54:57 +00:00
/*
* Load_mo3.cpp
* ------------
* Purpose: MO3 module loader.
* Notes : (currently none)
* Authors: Johannes Schultz / OpenMPT Devs
* Based on documentation and the decompression routines from the
* open-source UNMO3 project (https://github.com/lclevy/unmo3).
* The modified decompression code has been relicensed to the BSD
* license with permission from Laurent Clévy.
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "../common/ComponentManager.h"
#include "mpt/io/base.hpp"
#include "mpt/io/io.hpp"
#include "mpt/io/io_stdstream.hpp"
#include "Tables.h"
#include "../common/version.h"
#include "mpt/audio/span.hpp"
#include "MPEGFrame.h"
#include "OggStream.h"
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
#include <sstream>
#endif
#if defined(MPT_WITH_VORBIS)
#if MPT_COMPILER_CLANG
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-id-macro"
#endif // MPT_COMPILER_CLANG
#include <vorbis/codec.h>
#if MPT_COMPILER_CLANG
#pragma clang diagnostic pop
#endif // MPT_COMPILER_CLANG
#endif
#if defined(MPT_WITH_VORBISFILE)
#if MPT_COMPILER_CLANG
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-id-macro"
#endif // MPT_COMPILER_CLANG
#include <vorbis/vorbisfile.h>
#if MPT_COMPILER_CLANG
#pragma clang diagnostic pop
#endif // MPT_COMPILER_CLANG
#include "openmpt/soundbase/Copy.hpp"
#endif
#ifdef MPT_WITH_STBVORBIS
#include <stb_vorbis/stb_vorbis.c>
#include "openmpt/soundbase/Copy.hpp"
#endif // MPT_WITH_STBVORBIS
OPENMPT_NAMESPACE_BEGIN
struct MO3FileHeader
{
enum MO3HeaderFlags
{
linearSlides = 0x0001,
isS3M = 0x0002,
s3mFastSlides = 0x0004,
isMTM = 0x0008, // Actually this is simply "not XM". But if none of the S3M, MOD and IT flags are set, it's an MTM.
s3mAmigaLimits = 0x0010,
// 0x20 and 0x40 have been used in old versions for things that can be inferred from the file format anyway.
// The official UNMO3 ignores them.
isMOD = 0x0080,
isIT = 0x0100,
instrumentMode = 0x0200,
itCompatGxx = 0x0400,
itOldFX = 0x0800,
modplugMode = 0x10000,
unknown = 0x20000, // Always set (internal BASS flag to designate modules)
modVBlank = 0x80000,
hasPlugins = 0x100000,
extFilterRange = 0x200000,
};
uint8le numChannels; // 1...64 (limited by channel panning and volume)
uint16le numOrders;
uint16le restartPos;
uint16le numPatterns;
uint16le numTracks;
uint16le numInstruments;
uint16le numSamples;
uint8le defaultSpeed;
uint8le defaultTempo;
uint32le flags; // See MO3HeaderFlags
uint8le globalVol; // 0...128 in IT, 0...64 in S3M
uint8le panSeparation; // 0...128 in IT
int8le sampleVolume; // Only used in IT
uint8le chnVolume[64]; // 0...64
uint8le chnPan[64]; // 0...256, 127 = surround
uint8le sfxMacros[16];
uint8le fixedMacros[128][2];
};
MPT_BINARY_STRUCT(MO3FileHeader, 422)
struct MO3Envelope
{
enum MO3EnvelopeFlags
{
envEnabled = 0x01,
envSustain = 0x02,
envLoop = 0x04,
envFilter = 0x10,
envCarry = 0x20,
};
uint8le flags; // See MO3EnvelopeFlags
uint8le numNodes;
uint8le sustainStart;
uint8le sustainEnd;
uint8le loopStart;
uint8le loopEnd;
int16le points[25][2];
// Convert MO3 envelope data into OpenMPT's internal envelope format
void ConvertToMPT(InstrumentEnvelope &mptEnv, uint8 envShift) const
{
if(flags & envEnabled) mptEnv.dwFlags.set(ENV_ENABLED);
if(flags & envSustain) mptEnv.dwFlags.set(ENV_SUSTAIN);
if(flags & envLoop) mptEnv.dwFlags.set(ENV_LOOP);
if(flags & envFilter) mptEnv.dwFlags.set(ENV_FILTER);
if(flags & envCarry) mptEnv.dwFlags.set(ENV_CARRY);
mptEnv.resize(std::min(numNodes.get(), uint8(25)));
mptEnv.nSustainStart = sustainStart;
mptEnv.nSustainEnd = sustainEnd;
mptEnv.nLoopStart = loopStart;
mptEnv.nLoopEnd = loopEnd;
for(uint32 ev = 0; ev < mptEnv.size(); ev++)
{
mptEnv[ev].tick = points[ev][0];
if(ev > 0 && mptEnv[ev].tick < mptEnv[ev - 1].tick)
mptEnv[ev].tick = mptEnv[ev - 1].tick + 1;
mptEnv[ev].value = static_cast<uint8>(Clamp(points[ev][1] >> envShift, 0, 64));
}
}
};
MPT_BINARY_STRUCT(MO3Envelope, 106)
struct MO3Instrument
{
enum MO3InstrumentFlags
{
playOnMIDI = 0x01,
mute = 0x02,
};
uint32le flags; // See MO3InstrumentFlags
uint16le sampleMap[120][2];
MO3Envelope volEnv;
MO3Envelope panEnv;
MO3Envelope pitchEnv;
struct XMVibratoSettings
{
uint8le type;
uint8le sweep;
uint8le depth;
uint8le rate;
} vibrato; // Applies to all samples of this instrument (XM)
uint16le fadeOut;
uint8le midiChannel;
uint8le midiBank;
uint8le midiPatch;
uint8le midiBend;
uint8le globalVol; // 0...128
uint16le panning; // 0...256 if enabled, 0xFFFF otherwise
uint8le nna;
uint8le pps;
uint8le ppc;
uint8le dct;
uint8le dca;
uint16le volSwing; // 0...100
uint16le panSwing; // 0...256
uint8le cutoff; // 0...127, + 128 if enabled
uint8le resonance; // 0...127, + 128 if enabled
// Convert MO3 instrument data into OpenMPT's internal instrument format
void ConvertToMPT(ModInstrument &mptIns, MODTYPE type) const
{
if(type == MOD_TYPE_XM)
{
for(size_t i = 0; i < 96; i++)
{
mptIns.Keyboard[i + 12] = sampleMap[i][1] + 1;
}
} else
{
for(size_t i = 0; i < 120; i++)
{
mptIns.NoteMap[i] = static_cast<uint8>(sampleMap[i][0] + NOTE_MIN);
mptIns.Keyboard[i] = sampleMap[i][1] + 1;
}
}
volEnv.ConvertToMPT(mptIns.VolEnv, 0);
panEnv.ConvertToMPT(mptIns.PanEnv, 0);
pitchEnv.ConvertToMPT(mptIns.PitchEnv, 5);
mptIns.nFadeOut = fadeOut;
if(midiChannel >= 128)
{
// Plugin
mptIns.nMixPlug = midiChannel - 127;
} else if(midiChannel < 17 && (flags & playOnMIDI))
{
// XM, or IT with recent encoder
mptIns.nMidiChannel = midiChannel + MidiFirstChannel;
} else if(midiChannel > 0 && midiChannel < 17)
{
// IT encoded with MO3 version prior to 2.4.1 (yes, channel 0 is represented the same way as "no channel")
mptIns.nMidiChannel = midiChannel + MidiFirstChannel;
}
if(mptIns.nMidiChannel != MidiNoChannel)
{
if(type == MOD_TYPE_XM)
{
mptIns.nMidiProgram = midiPatch + 1;
} else
{
if(midiBank < 128)
mptIns.wMidiBank = midiBank + 1;
if(midiPatch < 128)
mptIns.nMidiProgram = midiPatch + 1;
}
mptIns.midiPWD = midiBend;
}
if(type == MOD_TYPE_IT)
mptIns.nGlobalVol = std::min(static_cast<uint8>(globalVol), uint8(128)) / 2u;
if(panning <= 256)
{
mptIns.nPan = panning;
mptIns.dwFlags.set(INS_SETPANNING);
}
mptIns.nNNA = static_cast<NewNoteAction>(nna.get());
mptIns.nPPS = pps;
mptIns.nPPC = ppc;
mptIns.nDCT = static_cast<DuplicateCheckType>(dct.get());
mptIns.nDNA = static_cast<DuplicateNoteAction>(dca.get());
mptIns.nVolSwing = static_cast<uint8>(std::min(volSwing.get(), uint16(100)));
mptIns.nPanSwing = static_cast<uint8>(std::min(panSwing.get(), uint16(256)) / 4u);
mptIns.SetCutoff(cutoff & 0x7F, (cutoff & 0x80) != 0);
mptIns.SetResonance(resonance & 0x7F, (resonance & 0x80) != 0);
}
};
MPT_BINARY_STRUCT(MO3Instrument, 826)
struct MO3Sample
{
enum MO3SampleFlags
{
smp16Bit = 0x01,
smpLoop = 0x10,
smpPingPongLoop = 0x20,
smpSustain = 0x100,
smpSustainPingPong = 0x200,
smpStereo = 0x400,
smpCompressionMPEG = 0x1000, // MPEG 1.0 / 2.0 / 2.5 sample
smpCompressionOgg = 0x1000 | 0x2000, // Ogg sample
smpSharedOgg = 0x1000 | 0x2000 | 0x4000, // Ogg sample with shared vorbis header
smpDeltaCompression = 0x2000, // Deltas + compression
smpDeltaPrediction = 0x4000, // Delta prediction + compression
smpOPLInstrument = 0x8000, // OPL patch data
smpCompressionMask = 0x1000 | 0x2000 | 0x4000 | 0x8000
};
uint32le freqFinetune; // Frequency in S3M and IT, finetune (0...255) in MOD, MTM, XM
int8le transpose;
uint8le defaultVolume; // 0...64
uint16le panning; // 0...256 if enabled, 0xFFFF otherwise
uint32le length;
uint32le loopStart;
uint32le loopEnd;
uint16le flags; // See MO3SampleFlags
uint8le vibType;
uint8le vibSweep;
uint8le vibDepth;
uint8le vibRate;
uint8le globalVol; // 0...64 in IT, in XM it represents the instrument number
uint32le sustainStart;
uint32le sustainEnd;
int32le compressedSize;
uint16le encoderDelay; // MP3: Ignore first n bytes of decoded output. Ogg: Shared Ogg header size
// Convert MO3 sample data into OpenMPT's internal instrument format
void ConvertToMPT(ModSample &mptSmp, MODTYPE type, bool frequencyIsHertz) const
{
mptSmp.Initialize();
mptSmp.SetDefaultCuePoints();
if(type & (MOD_TYPE_IT | MOD_TYPE_S3M))
{
if(frequencyIsHertz)
mptSmp.nC5Speed = freqFinetune;
else
mptSmp.nC5Speed = mpt::saturate_round<uint32>(8363.0 * std::pow(2.0, static_cast<int32>(freqFinetune + 1408) / 1536.0));
} else
{
mptSmp.nFineTune = static_cast<int8>(freqFinetune);
if(type != MOD_TYPE_MTM)
mptSmp.nFineTune -= 128;
mptSmp.RelativeTone = transpose;
}
mptSmp.nVolume = std::min(defaultVolume.get(), uint8(64)) * 4u;
if(panning <= 256)
{
mptSmp.nPan = panning;
mptSmp.uFlags.set(CHN_PANNING);
}
mptSmp.nLength = length;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
if(flags & smpLoop)
mptSmp.uFlags.set(CHN_LOOP);
if(flags & smpPingPongLoop)
mptSmp.uFlags.set(CHN_PINGPONGLOOP);
if(flags & smpSustain)
mptSmp.uFlags.set(CHN_SUSTAINLOOP);
if(flags & smpSustainPingPong)
mptSmp.uFlags.set(CHN_PINGPONGSUSTAIN);
mptSmp.nVibType = static_cast<VibratoType>(AutoVibratoIT2XM[vibType & 7]);
mptSmp.nVibSweep = vibSweep;
mptSmp.nVibDepth = vibDepth;
mptSmp.nVibRate = vibRate;
if(type == MOD_TYPE_IT)
mptSmp.nGlobalVol = std::min(static_cast<uint8>(globalVol), uint8(64));
mptSmp.nSustainStart = sustainStart;
mptSmp.nSustainEnd = sustainEnd;
}
};
MPT_BINARY_STRUCT(MO3Sample, 41)
// We need all this information for Ogg-compressed samples with shared headers:
// A shared header can be taken from a sample that has not been read yet, so
// we first need to read all headers, and then load the Ogg samples afterwards.
struct MO3SampleChunk
{
FileReader chunk;
uint16 headerSize;
int16 sharedHeader;
MO3SampleChunk(const FileReader &chunk_ = FileReader(), uint16 headerSize_ = 0, int16 sharedHeader_ = 0)
: chunk(chunk_), headerSize(headerSize_), sharedHeader(sharedHeader_) {}
};
// Unpack macros
// shift control bits until it is empty:
// a 0 bit means literal : the next data byte is copied
// a 1 means compressed data
// then the next 2 bits determines what is the LZ ptr
// ('00' same as previous, else stored in stream)
#define READ_CTRL_BIT \
data <<= 1; \
carry = (data > 0xFF); \
data &= 0xFF; \
if(data == 0) \
{ \
uint8 nextByte; \
if(!file.Read(nextByte)) \
break; \
data = nextByte; \
data = (data << 1) + 1; \
carry = (data > 0xFF); \
data &= 0xFF; \
}
// length coded within control stream:
// most significant bit is 1
// then the first bit of each bits pair (noted n1),
// until second bit is 0 (noted n0)
#define DECODE_CTRL_BITS \
{ \
strLen++; \
do \
{ \
READ_CTRL_BIT; \
strLen = mpt::lshift_signed(strLen, 1) + carry; \
READ_CTRL_BIT; \
} while(carry); \
}
static bool UnpackMO3Data(FileReader &file, std::vector<uint8> &uncompressed, const uint32 size)
{
if(!size)
return false;
uint16 data = 0;
int8 carry = 0; // x86 carry (used to propagate the most significant bit from one byte to another)
int32 strLen = 0; // length of previous string
int32 strOffset; // string offset
uint32 previousPtr = 0;
// Read first uncompressed byte
uncompressed.push_back(file.ReadUint8());
uint32 remain = size - 1;
while(remain > 0)
{
READ_CTRL_BIT;
if(!carry)
{
// a 0 ctrl bit means 'copy', not compressed byte
if(uint8 b; file.Read(b))
uncompressed.push_back(b);
else
break;
remain--;
} else
{
// a 1 ctrl bit means compressed bytes are following
uint8 lengthAdjust = 0; // length adjustment
DECODE_CTRL_BITS; // read length, and if strLen > 3 (coded using more than 1 bits pair) also part of the offset value
strLen -= 3;
if(strLen < 0)
{
// means LZ ptr with same previous relative LZ ptr (saved one)
strOffset = previousPtr; // restore previous Ptr
strLen++;
} else
{
// LZ ptr in ctrl stream
if(uint8 b; file.Read(b))
strOffset = mpt::lshift_signed(strLen, 8) | b; // read less significant offset byte from stream
else
break;
strLen = 0;
strOffset = ~strOffset;
if(strOffset < -1280)
lengthAdjust++;
lengthAdjust++; // length is always at least 1
if(strOffset < -32000)
lengthAdjust++;
previousPtr = strOffset; // save current Ptr
}
// read the next 2 bits as part of strLen
READ_CTRL_BIT;
strLen = mpt::lshift_signed(strLen, 1) + carry;
READ_CTRL_BIT;
strLen = mpt::lshift_signed(strLen, 1) + carry;
if(strLen == 0)
{
// length does not fit in 2 bits
DECODE_CTRL_BITS; // decode length: 1 is the most significant bit,
strLen += 2; // then first bit of each bits pairs (noted n1), until n0.
}
strLen += lengthAdjust; // length adjustment
if(remain < static_cast<uint32>(strLen) || strLen <= 0)
break;
if(strOffset >= 0 || -static_cast<ptrdiff_t>(uncompressed.size()) > strOffset)
break;
// Copy previous string
// Need to do this in two steps as source and destination may overlap (e.g. strOffset = -1, strLen = 2 repeats last character twice)
uncompressed.insert(uncompressed.end(), strLen, 0);
remain -= strLen;
auto src = uncompressed.cend() - strLen + strOffset;
auto dst = uncompressed.end() - strLen;
do
{
strLen--;
*dst++ = *src++;
} while(strLen > 0);
}
}
#ifdef MPT_BUILD_FUZZER
// When using a fuzzer, we should not care if the decompressed buffer has the correct size.
// This makes finding new interesting test cases much easier.
return true;
#else
return remain == 0;
#endif // MPT_BUILD_FUZZER
}
struct MO3Delta8BitParams
{
using sample_t = int8;
using unsigned_t = uint8;
static constexpr int shift = 7;
static constexpr uint8 dhInit = 4;
static inline void Decode(FileReader &file, int8 &carry, uint16 &data, uint8 & /*dh*/, unsigned_t &val)
{
do
{
READ_CTRL_BIT;
val = (val << 1) + carry;
READ_CTRL_BIT;
} while(carry);
}
};
struct MO3Delta16BitParams
{
using sample_t = int16;
using unsigned_t = uint16;
static constexpr int shift = 15;
static constexpr uint8 dhInit = 8;
static inline void Decode(FileReader &file, int8 &carry, uint16 &data, uint8 &dh, unsigned_t &val)
{
if(dh < 5)
{
do
{
READ_CTRL_BIT;
val = (val << 1) + carry;
READ_CTRL_BIT;
val = (val << 1) + carry;
READ_CTRL_BIT;
} while(carry);
} else
{
do
{
READ_CTRL_BIT;
val = (val << 1) + carry;
READ_CTRL_BIT;
} while(carry);
}
}
};
template <typename Properties>
static void UnpackMO3DeltaSample(FileReader &file, typename Properties::sample_t *dst, uint32 length, uint8 numChannels)
{
uint8 dh = Properties::dhInit, cl = 0;
int8 carry = 0;
uint16 data = 0;
typename Properties::unsigned_t val;
typename Properties::sample_t previous = 0;
for(uint8 chn = 0; chn < numChannels; chn++)
{
typename Properties::sample_t *p = dst + chn;
const typename Properties::sample_t *const pEnd = p + length * numChannels;
while(p < pEnd)
{
val = 0;
Properties::Decode(file, carry, data, dh, val);
cl = dh;
while(cl > 0)
{
READ_CTRL_BIT;
val = (val << 1) + carry;
cl--;
}
cl = 1;
if(val >= 4)
{
cl = Properties::shift;
while(((1 << cl) & val) == 0 && cl > 1)
cl--;
}
dh = dh + cl;
dh >>= 1; // next length in bits of encoded delta second part
carry = val & 1; // sign of delta 1=+, 0=not
val >>= 1;
if(carry == 0)
val = ~val; // negative delta
val += previous; // previous value + delta
*p = val;
p += numChannels;
previous = val;
}
}
}
template <typename Properties>
static void UnpackMO3DeltaPredictionSample(FileReader &file, typename Properties::sample_t *dst, uint32 length, uint8 numChannels)
{
uint8 dh = Properties::dhInit, cl = 0;
int8 carry;
uint16 data = 0;
int32 next = 0;
typename Properties::unsigned_t val = 0;
typename Properties::sample_t sval = 0, delta = 0, previous = 0;
for(uint8 chn = 0; chn < numChannels; chn++)
{
typename Properties::sample_t *p = dst + chn;
const typename Properties::sample_t *const pEnd = p + length * numChannels;
while(p < pEnd)
{
val = 0;
Properties::Decode(file, carry, data, dh, val);
cl = dh; // length in bits of: delta second part (right most bits of delta) and sign bit
while(cl > 0)
{
READ_CTRL_BIT;
val = (val << 1) + carry;
cl--;
}
cl = 1;
if(val >= 4)
{
cl = Properties::shift;
while(((1 << cl) & val) == 0 && cl > 1)
cl--;
}
dh = dh + cl;
dh >>= 1; // next length in bits of encoded delta second part
carry = val & 1; // sign of delta 1=+, 0=not
val >>= 1;
if(carry == 0)
val = ~val; // negative delta
delta = static_cast<typename Properties::sample_t>(val);
val = val + static_cast<typename Properties::unsigned_t>(next); // predicted value + delta
*p = val;
p += numChannels;
sval = static_cast<typename Properties::sample_t>(val);
next = (sval * (1 << 1)) + (delta >> 1) - previous; // corrected next value
Limit(next, std::numeric_limits<typename Properties::sample_t>::min(), std::numeric_limits<typename Properties::sample_t>::max());
previous = sval;
}
}
}
#undef READ_CTRL_BIT
#undef DECODE_CTRL_BITS
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
static size_t VorbisfileFilereaderRead(void *ptr, size_t size, size_t nmemb, void *datasource)
{
FileReader &file = *reinterpret_cast<FileReader *>(datasource);
return file.ReadRaw(mpt::span(mpt::void_cast<std::byte *>(ptr), size * nmemb)).size() / size;
}
static int VorbisfileFilereaderSeek(void *datasource, ogg_int64_t offset, int whence)
{
FileReader &file = *reinterpret_cast<FileReader *>(datasource);
switch(whence)
{
case SEEK_SET:
if(!mpt::in_range<FileReader::off_t>(offset))
{
return -1;
}
return file.Seek(mpt::saturate_cast<FileReader::off_t>(offset)) ? 0 : -1;
case SEEK_CUR:
if(offset < 0)
{
if(offset == std::numeric_limits<ogg_int64_t>::min())
{
return -1;
}
if(!mpt::in_range<FileReader::off_t>(0 - offset))
{
return -1;
}
return file.SkipBack(mpt::saturate_cast<FileReader::off_t>(0 - offset)) ? 0 : -1;
} else
{
if(!mpt::in_range<FileReader::off_t>(offset))
{
return -1;
}
return file.Skip(mpt::saturate_cast<FileReader::off_t>(offset)) ? 0 : -1;
}
break;
case SEEK_END:
if(!mpt::in_range<FileReader::off_t>(offset))
{
return -1;
}
if(!mpt::in_range<FileReader::off_t>(file.GetLength() + offset))
{
return -1;
}
return file.Seek(mpt::saturate_cast<FileReader::off_t>(file.GetLength() + offset)) ? 0 : -1;
default:
return -1;
}
}
static long VorbisfileFilereaderTell(void *datasource)
{
FileReader &file = *reinterpret_cast<FileReader *>(datasource);
FileReader::off_t result = file.GetPosition();
if(!mpt::in_range<long>(result))
{
return -1;
}
return static_cast<long>(result);
}
#endif // MPT_WITH_VORBIS && MPT_WITH_VORBISFILE
struct MO3ContainerHeader
{
char magic[3]; // MO3
uint8le version;
uint32le musicSize;
};
MPT_BINARY_STRUCT(MO3ContainerHeader, 8)
static bool ValidateHeader(const MO3ContainerHeader &containerHeader)
{
if(std::memcmp(containerHeader.magic, "MO3", 3))
{
return false;
}
if(containerHeader.musicSize <= sizeof(MO3FileHeader) || containerHeader.musicSize >= uint32_max / 2u)
{
return false;
}
if(containerHeader.version > 5)
{
return false;
}
return true;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderMO3(MemoryFileReader file, const uint64 *pfilesize)
{
MO3ContainerHeader containerHeader;
if(!file.ReadStruct(containerHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(containerHeader))
{
return ProbeFailure;
}
MPT_UNREFERENCED_PARAMETER(pfilesize);
return ProbeSuccess;
}
bool CSoundFile::ReadMO3(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
MO3ContainerHeader containerHeader;
if(!file.ReadStruct(containerHeader))
{
return false;
}
if(!ValidateHeader(containerHeader))
{
return false;
}
if(loadFlags == onlyVerifyHeader)
{
return true;
}
const uint8 version = containerHeader.version;
uint32 compressedSize = uint32_max, reserveSize = 1024 * 1024; // Generous estimate based on biggest pre-v5 MO3s found in the wild (~350K music data)
if(version >= 5)
{
// Size of compressed music chunk
compressedSize = file.ReadUint32LE();
if(!file.CanRead(compressedSize))
return false;
// Generous estimate based on highest real-world compression ratio I found in a module (~20:1)
reserveSize = std::min(Util::MaxValueOfType(reserveSize) / 32u, compressedSize) * 32u;
}
std::vector<uint8> musicData;
// We don't always reserve the whole uncompressed size as claimed by the module to guard against broken files
// that e.g. claim that the uncompressed size is 1GB while the MO3 file itself is only 100 bytes.
// As the LZ compression used in MO3 doesn't allow for establishing a clear upper bound for the maximum size,
// this is probably the only sensible way we can prevent DoS due to huge allocations.
musicData.reserve(std::min(reserveSize, containerHeader.musicSize.get()));
if(!UnpackMO3Data(file, musicData, containerHeader.musicSize))
{
return false;
}
if(version >= 5)
{
file.Seek(12 + compressedSize);
}
InitializeGlobals();
InitializeChannels();
FileReader musicChunk(mpt::as_span(musicData));
musicChunk.ReadNullString(m_songName);
musicChunk.ReadNullString(m_songMessage);
MO3FileHeader fileHeader;
if(!musicChunk.ReadStruct(fileHeader)
|| fileHeader.numChannels == 0 || fileHeader.numChannels > MAX_BASECHANNELS
|| fileHeader.numInstruments >= MAX_INSTRUMENTS
|| fileHeader.numSamples >= MAX_SAMPLES)
{
return false;
}
m_nChannels = fileHeader.numChannels;
Order().SetRestartPos(fileHeader.restartPos);
m_nInstruments = fileHeader.numInstruments;
m_nSamples = fileHeader.numSamples;
m_nDefaultSpeed = fileHeader.defaultSpeed ? fileHeader.defaultSpeed : 6;
m_nDefaultTempo.Set(fileHeader.defaultTempo ? fileHeader.defaultTempo : 125, 0);
if(fileHeader.flags & MO3FileHeader::isIT)
SetType(MOD_TYPE_IT);
else if(fileHeader.flags & MO3FileHeader::isS3M)
SetType(MOD_TYPE_S3M);
else if(fileHeader.flags & MO3FileHeader::isMOD)
SetType(MOD_TYPE_MOD);
else if(fileHeader.flags & MO3FileHeader::isMTM)
SetType(MOD_TYPE_MTM);
else
SetType(MOD_TYPE_XM);
m_SongFlags.set(SONG_IMPORTED);
if(fileHeader.flags & MO3FileHeader::linearSlides)
m_SongFlags.set(SONG_LINEARSLIDES);
if((fileHeader.flags & MO3FileHeader::s3mAmigaLimits) && m_nType == MOD_TYPE_S3M)
m_SongFlags.set(SONG_AMIGALIMITS);
if((fileHeader.flags & MO3FileHeader::s3mFastSlides) && m_nType == MOD_TYPE_S3M)
m_SongFlags.set(SONG_FASTVOLSLIDES);
if(!(fileHeader.flags & MO3FileHeader::itOldFX) && m_nType == MOD_TYPE_IT)
m_SongFlags.set(SONG_ITOLDEFFECTS);
if(!(fileHeader.flags & MO3FileHeader::itCompatGxx) && m_nType == MOD_TYPE_IT)
m_SongFlags.set(SONG_ITCOMPATGXX);
if(fileHeader.flags & MO3FileHeader::extFilterRange)
m_SongFlags.set(SONG_EXFILTERRANGE);
if(fileHeader.flags & MO3FileHeader::modVBlank)
m_playBehaviour.set(kMODVBlankTiming);
if(m_nType == MOD_TYPE_IT)
m_nDefaultGlobalVolume = std::min(fileHeader.globalVol.get(), uint8(128)) * 2;
else if(m_nType == MOD_TYPE_S3M)
m_nDefaultGlobalVolume = std::min(fileHeader.globalVol.get(), uint8(64)) * 4;
if(fileHeader.sampleVolume < 0)
m_nSamplePreAmp = fileHeader.sampleVolume + 52;
else
m_nSamplePreAmp = static_cast<uint32>(std::exp(fileHeader.sampleVolume * 3.1 / 20.0)) + 51;
// Header only has room for 64 channels, like in IT
const CHANNELINDEX headerChannels = std::min(m_nChannels, CHANNELINDEX(64));
for(CHANNELINDEX i = 0; i < headerChannels; i++)
{
if(m_nType == MOD_TYPE_IT)
ChnSettings[i].nVolume = std::min(fileHeader.chnVolume[i].get(), uint8(64));
if(m_nType != MOD_TYPE_XM)
{
if(fileHeader.chnPan[i] == 127)
ChnSettings[i].dwFlags = CHN_SURROUND;
else if(fileHeader.chnPan[i] == 255)
ChnSettings[i].nPan = 256;
else
ChnSettings[i].nPan = fileHeader.chnPan[i];
}
}
bool anyMacros = false;
for(uint32 i = 0; i < 16; i++)
{
if(fileHeader.sfxMacros[i])
anyMacros = true;
}
for(uint32 i = 0; i < 128; i++)
{
if(fileHeader.fixedMacros[i][1])
anyMacros = true;
}
if(anyMacros)
{
for(uint32 i = 0; i < 16; i++)
{
if(fileHeader.sfxMacros[i])
m_MidiCfg.SFx[i] = MPT_AFORMAT("F0F0{}z")(mpt::afmt::HEX0<2>(fileHeader.sfxMacros[i] - 1));
else
m_MidiCfg.SFx[i] = "";
}
for(uint32 i = 0; i < 128; i++)
{
if(fileHeader.fixedMacros[i][1])
m_MidiCfg.Zxx[i] = MPT_AFORMAT("F0F0{}{}")(mpt::afmt::HEX0<2>(fileHeader.fixedMacros[i][1] - 1), mpt::afmt::HEX0<2>(fileHeader.fixedMacros[i][0].get()));
else
m_MidiCfg.Zxx[i] = "";
}
}
const bool hasOrderSeparators = !(m_nType & (MOD_TYPE_MOD | MOD_TYPE_XM));
ReadOrderFromFile<uint8>(Order(), musicChunk, fileHeader.numOrders, hasOrderSeparators ? 0xFF : uint16_max, hasOrderSeparators ? 0xFE : uint16_max);
// Track assignments for all patterns
FileReader trackChunk = musicChunk.ReadChunk(fileHeader.numPatterns * fileHeader.numChannels * sizeof(uint16));
FileReader patLengthChunk = musicChunk.ReadChunk(fileHeader.numPatterns * sizeof(uint16));
std::vector<FileReader> tracks(fileHeader.numTracks);
for(auto &track : tracks)
{
uint32 len = musicChunk.ReadUint32LE();
track = musicChunk.ReadChunk(len);
}
/*
MO3 pattern commands:
01 = Note
02 = Instrument
03 = CMD_ARPEGGIO (IT, XM, S3M, MOD, MTM)
04 = CMD_PORTAMENTOUP (XM, MOD, MTM) [for formats with separate fine slides]
05 = CMD_PORTAMENTODOWN (XM, MOD, MTM) [for formats with separate fine slides]
06 = CMD_TONEPORTAMENTO (IT, XM, S3M, MOD, MTM) / VOLCMD_TONEPORTA (IT, XM)
07 = CMD_VIBRATO (IT, XM, S3M, MOD, MTM) / VOLCMD_VIBRATODEPTH (IT)
08 = CMD_TONEPORTAVOL (XM, MOD, MTM)
09 = CMD_VIBRATOVOL (XM, MOD, MTM)
0A = CMD_TREMOLO (IT, XM, S3M, MOD, MTM)
0B = CMD_PANNING8 (IT, XM, S3M, MOD, MTM) / VOLCMD_PANNING (IT, XM)
0C = CMD_OFFSET (IT, XM, S3M, MOD, MTM)
0D = CMD_VOLUMESLIDE (XM, MOD, MTM)
0E = CMD_POSITIONJUMP (IT, XM, S3M, MOD, MTM)
0F = CMD_VOLUME (XM, MOD, MTM) / VOLCMD_VOLUME (IT, XM, S3M)
10 = CMD_PATTERNBREAK (IT, XM, MOD, MTM) - BCD-encoded in MOD/XM/S3M/MTM!
11 = CMD_MODCMDEX (XM, MOD, MTM)
12 = CMD_TEMPO (XM, MOD, MTM) / CMD_SPEED (XM, MOD, MTM)
13 = CMD_TREMOR (XM)
14 = VOLCMD_VOLSLIDEUP x=X0 (XM) / VOLCMD_VOLSLIDEDOWN x=0X (XM)
15 = VOLCMD_FINEVOLUP x=X0 (XM) / VOLCMD_FINEVOLDOWN x=0X (XM)
16 = CMD_GLOBALVOLUME (IT, XM, S3M)
17 = CMD_GLOBALVOLSLIDE (XM)
18 = CMD_KEYOFF (XM)
19 = CMD_SETENVPOSITION (XM)
1A = CMD_PANNINGSLIDE (XM)
1B = VOLCMD_PANSLIDELEFT x=0X (XM) / VOLCMD_PANSLIDERIGHT x=X0 (XM)
1C = CMD_RETRIG (XM)
1D = CMD_XFINEPORTAUPDOWN X1x (XM)
1E = CMD_XFINEPORTAUPDOWN X2x (XM)
1F = VOLCMD_VIBRATOSPEED (XM)
20 = VOLCMD_VIBRATODEPTH (XM)
21 = CMD_SPEED (IT, S3M)
22 = CMD_VOLUMESLIDE (IT, S3M)
23 = CMD_PORTAMENTODOWN (IT, S3M) [for formats without separate fine slides]
24 = CMD_PORTAMENTOUP (IT, S3M) [for formats without separate fine slides]
25 = CMD_TREMOR (IT, S3M)
26 = CMD_RETRIG (IT, S3M)
27 = CMD_FINEVIBRATO (IT, S3M)
28 = CMD_CHANNELVOLUME (IT, S3M)
29 = CMD_CHANNELVOLSLIDE (IT, S3M)
2A = CMD_PANNINGSLIDE (IT, S3M)
2B = CMD_S3MCMDEX (IT, S3M)
2C = CMD_TEMPO (IT, S3M)
2D = CMD_GLOBALVOLSLIDE (IT, S3M)
2E = CMD_PANBRELLO (IT, XM, S3M)
2F = CMD_MIDI (IT, XM, S3M)
30 = VOLCMD_FINEVOLUP x=0...9 (IT) / VOLCMD_FINEVOLDOWN x=10...19 (IT) / VOLCMD_VOLSLIDEUP x=20...29 (IT) / VOLCMD_VOLSLIDEDOWN x=30...39 (IT)
31 = VOLCMD_PORTADOWN (IT)
32 = VOLCMD_PORTAUP (IT)
33 = Unused XM command "W" (XM)
34 = Any other IT volume column command to support OpenMPT extensions (IT)
35 = CMD_XPARAM (IT)
36 = CMD_SMOOTHMIDI (IT)
37 = CMD_DELAYCUT (IT)
38 = CMD_FINETUNE (MPTM)
39 = CMD_FINETUNE_SMOOTH (MPTM)
Note: S3M/IT CMD_TONEPORTAVOL / CMD_VIBRATOVOL are encoded as two commands:
K= 07 00 22 x
L= 06 00 22 x
*/
static constexpr ModCommand::COMMAND effTrans[] =
{
CMD_NONE, CMD_NONE, CMD_NONE, CMD_ARPEGGIO,
CMD_PORTAMENTOUP, CMD_PORTAMENTODOWN, CMD_TONEPORTAMENTO, CMD_VIBRATO,
CMD_TONEPORTAVOL, CMD_VIBRATOVOL, CMD_TREMOLO, CMD_PANNING8,
CMD_OFFSET, CMD_VOLUMESLIDE, CMD_POSITIONJUMP, CMD_VOLUME,
CMD_PATTERNBREAK, CMD_MODCMDEX, CMD_TEMPO, CMD_TREMOR,
VOLCMD_VOLSLIDEUP, VOLCMD_FINEVOLUP, CMD_GLOBALVOLUME, CMD_GLOBALVOLSLIDE,
CMD_KEYOFF, CMD_SETENVPOSITION, CMD_PANNINGSLIDE, VOLCMD_PANSLIDELEFT,
CMD_RETRIG, CMD_XFINEPORTAUPDOWN, CMD_XFINEPORTAUPDOWN, VOLCMD_VIBRATOSPEED,
VOLCMD_VIBRATODEPTH, CMD_SPEED, CMD_VOLUMESLIDE, CMD_PORTAMENTODOWN,
CMD_PORTAMENTOUP, CMD_TREMOR, CMD_RETRIG, CMD_FINEVIBRATO,
CMD_CHANNELVOLUME, CMD_CHANNELVOLSLIDE, CMD_PANNINGSLIDE, CMD_S3MCMDEX,
CMD_TEMPO, CMD_GLOBALVOLSLIDE, CMD_PANBRELLO, CMD_MIDI,
VOLCMD_FINEVOLUP, VOLCMD_PORTADOWN, VOLCMD_PORTAUP, CMD_NONE,
VOLCMD_OFFSET, CMD_XPARAM, CMD_SMOOTHMIDI, CMD_DELAYCUT,
CMD_FINETUNE, CMD_FINETUNE_SMOOTH,
};
uint8 noteOffset = NOTE_MIN;
if(m_nType == MOD_TYPE_MTM)
noteOffset = 13 + NOTE_MIN;
else if(m_nType != MOD_TYPE_IT)
noteOffset = 12 + NOTE_MIN;
bool onlyAmigaNotes = true;
if(loadFlags & loadPatternData)
Patterns.ResizeArray(fileHeader.numPatterns);
for(PATTERNINDEX pat = 0; pat < fileHeader.numPatterns; pat++)
{
const ROWINDEX numRows = patLengthChunk.ReadUint16LE();
if(!(loadFlags & loadPatternData) || !Patterns.Insert(pat, numRows))
continue;
for(CHANNELINDEX chn = 0; chn < fileHeader.numChannels; chn++)
{
uint16 trackIndex = trackChunk.ReadUint16LE();
if(trackIndex >= tracks.size())
continue;
FileReader &track = tracks[trackIndex];
track.Rewind();
ROWINDEX row = 0;
ModCommand *patData = Patterns[pat].GetpModCommand(0, chn);
while(row < numRows)
{
const uint8 b = track.ReadUint8();
if(!b)
break;
const uint8 numCommands = (b & 0x0F), rep = (b >> 4);
ModCommand m = ModCommand::Empty();
for(uint8 c = 0; c < numCommands; c++)
{
uint8 cmd[2];
track.ReadArray(cmd);
// Import pattern commands
switch(cmd[0])
{
case 0x01:
// Note
m.note = cmd[1];
if(m.note < 120)
m.note += noteOffset;
else if(m.note == 0xFF)
m.note = NOTE_KEYOFF;
else if(m.note == 0xFE)
m.note = NOTE_NOTECUT;
else
m.note = NOTE_FADE;
if(!m.IsAmigaNote())
onlyAmigaNotes = false;
break;
case 0x02:
// Instrument
m.instr = cmd[1] + 1;
break;
case 0x06:
// Tone portamento
if(m.volcmd == VOLCMD_NONE && m_nType == MOD_TYPE_XM && !(cmd[1] & 0x0F))
{
m.volcmd = VOLCMD_TONEPORTAMENTO;
m.vol = cmd[1] >> 4;
break;
} else if(m.volcmd == VOLCMD_NONE && m_nType == MOD_TYPE_IT)
{
for(uint8 i = 0; i < 10; i++)
{
if(ImpulseTrackerPortaVolCmd[i] == cmd[1])
{
m.volcmd = VOLCMD_TONEPORTAMENTO;
m.vol = i;
break;
}
}
if(m.volcmd != VOLCMD_NONE)
break;
}
m.command = CMD_TONEPORTAMENTO;
m.param = cmd[1];
break;
case 0x07:
// Vibrato
if(m.volcmd == VOLCMD_NONE && cmd[1] < 10 && m_nType == MOD_TYPE_IT)
{
m.volcmd = VOLCMD_VIBRATODEPTH;
m.vol = cmd[1];
} else
{
m.command = CMD_VIBRATO;
m.param = cmd[1];
}
break;
case 0x0B:
// Panning
if(m.volcmd == VOLCMD_NONE)
{
if(m_nType == MOD_TYPE_IT && cmd[1] == 0xFF)
{
m.volcmd = VOLCMD_PANNING;
m.vol = 64;
break;
}
if((m_nType == MOD_TYPE_IT && !(cmd[1] & 0x03))
|| (m_nType == MOD_TYPE_XM && !(cmd[1] & 0x0F)))
{
m.volcmd = VOLCMD_PANNING;
m.vol = cmd[1] / 4;
break;
}
}
m.command = CMD_PANNING8;
m.param = cmd[1];
break;
case 0x0F:
// Volume
if(m_nType != MOD_TYPE_MOD && m.volcmd == VOLCMD_NONE && cmd[1] <= 64)
{
m.volcmd = VOLCMD_VOLUME;
m.vol = cmd[1];
} else
{
m.command = CMD_VOLUME;
m.param = cmd[1];
}
break;
case 0x10:
// Pattern break
m.command = CMD_PATTERNBREAK;
m.param = cmd[1];
if(m_nType != MOD_TYPE_IT)
m.param = ((m.param >> 4) * 10) + (m.param & 0x0F);
break;
case 0x12:
// Combined Tempo / Speed command
m.param = cmd[1];
if(m.param < 0x20)
m.command = CMD_SPEED;
else
m.command = CMD_TEMPO;
break;
case 0x14:
case 0x15:
// XM volume column volume slides
if(cmd[1] & 0xF0)
{
m.volcmd = static_cast<ModCommand::VOLCMD>((cmd[0] == 0x14) ? VOLCMD_VOLSLIDEUP : VOLCMD_FINEVOLUP);
m.vol = cmd[1] >> 4;
} else
{
m.volcmd = static_cast<ModCommand::VOLCMD>((cmd[0] == 0x14) ? VOLCMD_VOLSLIDEDOWN : VOLCMD_FINEVOLDOWN);
m.vol = cmd[1] & 0x0F;
}
break;
case 0x1B:
// XM volume column panning slides
if(cmd[1] & 0xF0)
{
m.volcmd = VOLCMD_PANSLIDERIGHT;
m.vol = cmd[1] >> 4;
} else
{
m.volcmd = VOLCMD_PANSLIDELEFT;
m.vol = cmd[1] & 0x0F;
}
break;
case 0x1D:
// XM extra fine porta up
m.command = CMD_XFINEPORTAUPDOWN;
m.param = 0x10 | cmd[1];
break;
case 0x1E:
// XM extra fine porta down
m.command = CMD_XFINEPORTAUPDOWN;
m.param = 0x20 | cmd[1];
break;
case 0x1F:
case 0x20:
// XM volume column vibrato
m.volcmd = effTrans[cmd[0]];
m.vol = cmd[1];
break;
case 0x22:
// IT / S3M volume slide
if(m.command == CMD_TONEPORTAMENTO)
m.command = CMD_TONEPORTAVOL;
else if(m.command == CMD_VIBRATO)
m.command = CMD_VIBRATOVOL;
else
m.command = CMD_VOLUMESLIDE;
m.param = cmd[1];
break;
case 0x30:
// IT volume column volume slides
m.vol = cmd[1] % 10;
if(cmd[1] < 10)
m.volcmd = VOLCMD_FINEVOLUP;
else if(cmd[1] < 20)
m.volcmd = VOLCMD_FINEVOLDOWN;
else if(cmd[1] < 30)
m.volcmd = VOLCMD_VOLSLIDEUP;
else if(cmd[1] < 40)
m.volcmd = VOLCMD_VOLSLIDEDOWN;
break;
case 0x31:
case 0x32:
// IT volume column portamento
m.volcmd = effTrans[cmd[0]];
m.vol = cmd[1];
break;
case 0x34:
// Any unrecognized IT volume command
if(cmd[1] >= 223 && cmd[1] <= 232)
{
m.volcmd = VOLCMD_OFFSET;
m.vol = cmd[1] - 223;
}
break;
default:
if(cmd[0] < std::size(effTrans))
{
m.command = effTrans[cmd[0]];
m.param = cmd[1];
}
break;
}
}
#ifdef MODPLUG_TRACKER
if(m_nType == MOD_TYPE_MTM)
m.Convert(MOD_TYPE_MTM, MOD_TYPE_S3M, *this);
#endif
ROWINDEX targetRow = std::min(row + rep, numRows);
while(row < targetRow)
{
*patData = m;
patData += fileHeader.numChannels;
row++;
}
}
}
}
if(GetType() == MOD_TYPE_MOD && GetNumChannels() == 4 && onlyAmigaNotes)
{
m_SongFlags.set(SONG_AMIGALIMITS | SONG_ISAMIGA);
}
const bool isSampleMode = (m_nType != MOD_TYPE_XM && !(fileHeader.flags & MO3FileHeader::instrumentMode));
std::vector<MO3Instrument::XMVibratoSettings> instrVibrato(m_nType == MOD_TYPE_XM ? m_nInstruments : 0);
for(INSTRUMENTINDEX ins = 1; ins <= m_nInstruments; ins++)
{
ModInstrument *pIns = nullptr;
if(isSampleMode || (pIns = AllocateInstrument(ins)) == nullptr)
{
// Even in IT sample mode, instrument headers are still stored....
while(musicChunk.ReadUint8() != 0)
;
if(version >= 5)
{
while(musicChunk.ReadUint8() != 0)
;
}
musicChunk.Skip(sizeof(MO3Instrument));
continue;
}
std::string name;
musicChunk.ReadNullString(name);
pIns->name = name;
if(version >= 5)
{
musicChunk.ReadNullString(name);
pIns->filename = name;
}
MO3Instrument insHeader;
if(!musicChunk.ReadStruct(insHeader))
break;
insHeader.ConvertToMPT(*pIns, m_nType);
if(m_nType == MOD_TYPE_XM)
instrVibrato[ins - 1] = insHeader.vibrato;
}
if(isSampleMode)
m_nInstruments = 0;
std::vector<MO3SampleChunk> sampleChunks(m_nSamples);
const bool frequencyIsHertz = (version >= 5 || !(fileHeader.flags & MO3FileHeader::linearSlides));
bool unsupportedSamples = false;
for(SAMPLEINDEX smp = 1; smp <= m_nSamples; smp++)
{
ModSample &sample = Samples[smp];
std::string name;
musicChunk.ReadNullString(name);
m_szNames[smp] = name;
if(version >= 5)
{
musicChunk.ReadNullString(name);
sample.filename = name;
}
MO3Sample smpHeader;
if(!musicChunk.ReadStruct(smpHeader))
break;
smpHeader.ConvertToMPT(sample, m_nType, frequencyIsHertz);
int16 sharedOggHeader = 0;
if(version >= 5 && (smpHeader.flags & MO3Sample::smpCompressionMask) == MO3Sample::smpSharedOgg)
{
sharedOggHeader = musicChunk.ReadInt16LE();
}
if(!(loadFlags & loadSampleData))
continue;
const uint32 compression = (smpHeader.flags & MO3Sample::smpCompressionMask);
if(!compression && smpHeader.compressedSize == 0)
{
// Uncompressed sample
SampleIO(
(smpHeader.flags & MO3Sample::smp16Bit) ? SampleIO::_16bit : SampleIO::_8bit,
(smpHeader.flags & MO3Sample::smpStereo) ? SampleIO::stereoSplit : SampleIO::mono,
SampleIO::littleEndian,
SampleIO::signedPCM)
.ReadSample(Samples[smp], file);
} else if(smpHeader.compressedSize < 0 && (smp + smpHeader.compressedSize) > 0)
{
// Duplicate sample
sample.CopyWaveform(Samples[smp + smpHeader.compressedSize]);
} else if(smpHeader.compressedSize > 0)
{
if(smpHeader.flags & MO3Sample::smp16Bit)
sample.uFlags.set(CHN_16BIT);
if(smpHeader.flags & MO3Sample::smpStereo)
sample.uFlags.set(CHN_STEREO);
FileReader sampleData = file.ReadChunk(smpHeader.compressedSize);
const uint8 numChannels = sample.GetNumChannels();
if(compression == MO3Sample::smpDeltaCompression || compression == MO3Sample::smpDeltaPrediction)
{
// In the best case, MO3 compression represents each sample point as two bits.
// As a result, if we have a file length of n, we know that the sample can be at most n*4 sample points long.
auto maxLength = sampleData.GetLength();
uint8 maxSamplesPerByte = 4 / numChannels;
if(Util::MaxValueOfType(maxLength) / maxSamplesPerByte >= maxLength)
maxLength *= maxSamplesPerByte;
else
maxLength = Util::MaxValueOfType(maxLength);
LimitMax(sample.nLength, mpt::saturate_cast<SmpLength>(maxLength));
}
if(compression == MO3Sample::smpDeltaCompression)
{
if(sample.AllocateSample())
{
if(smpHeader.flags & MO3Sample::smp16Bit)
UnpackMO3DeltaSample<MO3Delta16BitParams>(sampleData, sample.sample16(), sample.nLength, numChannels);
else
UnpackMO3DeltaSample<MO3Delta8BitParams>(sampleData, sample.sample8(), sample.nLength, numChannels);
}
} else if(compression == MO3Sample::smpDeltaPrediction)
{
if(sample.AllocateSample())
{
if(smpHeader.flags & MO3Sample::smp16Bit)
UnpackMO3DeltaPredictionSample<MO3Delta16BitParams>(sampleData, sample.sample16(), sample.nLength, numChannels);
else
UnpackMO3DeltaPredictionSample<MO3Delta8BitParams>(sampleData, sample.sample8(), sample.nLength, numChannels);
}
} else if(compression == MO3Sample::smpCompressionOgg || compression == MO3Sample::smpSharedOgg)
{
// Since shared Ogg headers can stem from a sample that has not been read yet, postpone Ogg import.
sampleChunks[smp - 1] = MO3SampleChunk(sampleData, smpHeader.encoderDelay, sharedOggHeader);
} else if(compression == MO3Sample::smpCompressionMPEG)
{
// Old MO3 encoders didn't remove LAME info frames. This is unfortunate since the encoder delay
// specified in the sample header does not take the gapless information from the LAME info frame
// into account. We should not depend on the MP3 decoder's capabilities to read or ignore such frames:
// - libmpg123 has MPG123_IGNORE_INFOFRAME but that requires API version 31 (mpg123 v1.14) or higher
// - Media Foundation does (currently) not read LAME gapless information at all
// So we just play safe and remove such frames.
FileReader mpegData(sampleData);
MPEGFrame frame(sampleData);
uint16 frameDelay = frame.numSamples * 2;
if(frame.isLAME && smpHeader.encoderDelay >= frameDelay)
{
// The info frame does not produce any output, but still counts towards the encoder delay.
smpHeader.encoderDelay -= frameDelay;
sampleData.Seek(frame.frameSize);
mpegData = sampleData.ReadChunk(sampleData.BytesLeft());
}
if(ReadMP3Sample(smp, mpegData, true, true) || ReadMediaFoundationSample(smp, mpegData, true))
{
if(smpHeader.encoderDelay > 0 && smpHeader.encoderDelay < sample.GetSampleSizeInBytes())
{
SmpLength delay = smpHeader.encoderDelay / sample.GetBytesPerSample();
memmove(sample.sampleb(), sample.sampleb() + smpHeader.encoderDelay, sample.GetSampleSizeInBytes() - smpHeader.encoderDelay);
sample.nLength -= delay;
}
LimitMax(sample.nLength, smpHeader.length);
} else
{
unsupportedSamples = true;
}
} else if(compression == MO3Sample::smpOPLInstrument)
{
OPLPatch patch;
if(sampleData.ReadArray(patch))
{
sample.SetAdlib(true, patch);
}
} else
{
unsupportedSamples = true;
}
}
}
// Now we can load Ogg samples with shared headers.
if(loadFlags & loadSampleData)
{
for(SAMPLEINDEX smp = 1; smp <= m_nSamples; smp++)
{
MO3SampleChunk &sampleChunk = sampleChunks[smp - 1];
// Is this an Ogg sample?
if(!sampleChunk.chunk.IsValid())
continue;
SAMPLEINDEX sharedOggHeader = smp + sampleChunk.sharedHeader;
// Which chunk are we going to read the header from?
// Note: Every Ogg stream has a unique serial number.
// stb_vorbis (currently) ignores this serial number so we can just stitch
// together our sample without adjusting the shared header's serial number.
const bool sharedHeader = sharedOggHeader != smp && sharedOggHeader > 0 && sharedOggHeader <= m_nSamples && sampleChunk.headerSize > 0;
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
std::vector<char> mergedData;
if(sharedHeader)
{
// Prepend the shared header to the actual sample data and adjust bitstream serial numbers.
// We do not handle multiple muxed logical streams as they do not exist in practice in mo3.
// We assume sequence numbers are consecutive at the end of the headers.
// Corrupted pages get dropped as required by Ogg spec. We cannot do any further sane parsing on them anyway.
// We do not match up multiple muxed stream properly as this would need parsing of actual packet data to determine or guess the codec.
// Ogg Vorbis files may contain at least an additional Ogg Skeleton stream. It is not clear whether these actually exist in MO3.
// We do not validate packet structure or logical bitstream structure (i.e. sequence numbers and granule positions).
// TODO: At least handle Skeleton streams here, as they violate our stream ordering assumptions here.
#if 0
// This block may still turn out to be useful as it does a more thourough validation of the stream than the optimized version below.
// We copy the whole data into a single consecutive buffer in order to keep things simple when interfacing libvorbisfile.
// We could in theory only adjust the header and pass 2 chunks to libvorbisfile.
// Another option would be to demux both chunks on our own (or using libogg) and pass the raw packet data to libvorbis directly.
std::ostringstream mergedStream(std::ios::binary);
mergedStream.imbue(std::locale::classic());
sampleChunks[sharedOggHeader - 1].chunk.Rewind();
FileReader sharedChunk = sampleChunks[sharedOggHeader - 1].chunk.ReadChunk(sampleChunk.headerSize);
sharedChunk.Rewind();
std::vector<uint32> streamSerials;
Ogg::PageInfo oggPageInfo;
std::vector<uint8> oggPageData;
streamSerials.clear();
while(Ogg::ReadPageAndSkipJunk(sharedChunk, oggPageInfo, oggPageData))
{
auto it = std::find(streamSerials.begin(), streamSerials.end(), oggPageInfo.header.bitstream_serial_number);
if(it == streamSerials.end())
{
streamSerials.push_back(oggPageInfo.header.bitstream_serial_number);
it = streamSerials.begin() + (streamSerials.size() - 1);
}
uint32 newSerial = it - streamSerials.begin() + 1;
oggPageInfo.header.bitstream_serial_number = newSerial;
Ogg::UpdatePageCRC(oggPageInfo, oggPageData);
Ogg::WritePage(mergedStream, oggPageInfo, oggPageData);
}
streamSerials.clear();
while(Ogg::ReadPageAndSkipJunk(sampleChunk.chunk, oggPageInfo, oggPageData))
{
auto it = std::find(streamSerials.begin(), streamSerials.end(), oggPageInfo.header.bitstream_serial_number);
if(it == streamSerials.end())
{
streamSerials.push_back(oggPageInfo.header.bitstream_serial_number);
it = streamSerials.begin() + (streamSerials.size() - 1);
}
uint32 newSerial = it - streamSerials.begin() + 1;
oggPageInfo.header.bitstream_serial_number = newSerial;
Ogg::UpdatePageCRC(oggPageInfo, oggPageData);
Ogg::WritePage(mergedStream, oggPageInfo, oggPageData);
}
std::string mergedStreamData = mergedStream.str();
mergedData.insert(mergedData.end(), mergedStreamData.begin(), mergedStreamData.end());
#else
// We assume same ordering of streams in both header and data if
// multiple streams are present.
std::ostringstream mergedStream(std::ios::binary);
mergedStream.imbue(std::locale::classic());
sampleChunks[sharedOggHeader - 1].chunk.Rewind();
FileReader sharedChunk = sampleChunks[sharedOggHeader - 1].chunk.ReadChunk(sampleChunk.headerSize);
sharedChunk.Rewind();
std::vector<uint32> dataStreamSerials;
std::vector<uint32> headStreamSerials;
Ogg::PageInfo oggPageInfo;
std::vector<uint8> oggPageData;
// Gather bitstream serial numbers form sample data chunk
dataStreamSerials.clear();
while(Ogg::ReadPageAndSkipJunk(sampleChunk.chunk, oggPageInfo, oggPageData))
{
if(!mpt::contains(dataStreamSerials, oggPageInfo.header.bitstream_serial_number))
{
dataStreamSerials.push_back(oggPageInfo.header.bitstream_serial_number);
}
}
// Apply the data bitstream serial numbers to the header
headStreamSerials.clear();
while(Ogg::ReadPageAndSkipJunk(sharedChunk, oggPageInfo, oggPageData))
{
auto it = std::find(headStreamSerials.begin(), headStreamSerials.end(), oggPageInfo.header.bitstream_serial_number);
if(it == headStreamSerials.end())
{
headStreamSerials.push_back(oggPageInfo.header.bitstream_serial_number);
it = headStreamSerials.begin() + (headStreamSerials.size() - 1);
}
uint32 newSerial = 0;
if(dataStreamSerials.size() >= static_cast<std::size_t>(it - headStreamSerials.begin()))
{
// Found corresponding stream in data chunk.
newSerial = dataStreamSerials[it - headStreamSerials.begin()];
} else
{
// No corresponding stream in data chunk. Find a free serialno.
std::size_t extraIndex = (it - headStreamSerials.begin()) - dataStreamSerials.size();
for(newSerial = 1; newSerial < 0xffffffffu; ++newSerial)
{
if(!mpt::contains(dataStreamSerials, newSerial))
{
extraIndex -= 1;
}
if(extraIndex == 0)
{
break;
}
}
}
oggPageInfo.header.bitstream_serial_number = newSerial;
Ogg::UpdatePageCRC(oggPageInfo, oggPageData);
Ogg::WritePage(mergedStream, oggPageInfo, oggPageData);
}
if(headStreamSerials.size() > 1)
{
AddToLog(LogWarning, MPT_UFORMAT("Sample {}: Ogg Vorbis data with shared header and multiple logical bitstreams in header chunk found. This may be handled incorrectly.")(smp));
} else if(dataStreamSerials.size() > 1)
{
AddToLog(LogWarning, MPT_UFORMAT("Sample {}: Ogg Vorbis sample with shared header and multiple logical bitstreams found. This may be handled incorrectly.")(smp));
} else if((dataStreamSerials.size() == 1) && (headStreamSerials.size() == 1) && (dataStreamSerials[0] != headStreamSerials[0]))
{
AddToLog(LogInformation, MPT_UFORMAT("Sample {}: Ogg Vorbis data with shared header and different logical bitstream serials found.")(smp));
}
std::string mergedStreamData = mergedStream.str();
mergedData.insert(mergedData.end(), mergedStreamData.begin(), mergedStreamData.end());
sampleChunk.chunk.Rewind();
FileReader::PinnedView sampleChunkView = sampleChunk.chunk.GetPinnedView();
mpt::span<const char> sampleChunkViewSpan = mpt::byte_cast<mpt::span<const char>>(sampleChunkView.span());
mergedData.insert(mergedData.end(), sampleChunkViewSpan.begin(), sampleChunkViewSpan.end());
#endif
}
FileReader mergedDataChunk(mpt::byte_cast<mpt::const_byte_span>(mpt::as_span(mergedData)));
FileReader &sampleData = sharedHeader ? mergedDataChunk : sampleChunk.chunk;
FileReader &headerChunk = sampleData;
#else // !(MPT_WITH_VORBIS && MPT_WITH_VORBISFILE)
FileReader &sampleData = sampleChunk.chunk;
FileReader &headerChunk = sharedHeader ? sampleChunks[sharedOggHeader - 1].chunk : sampleData;
#if defined(MPT_WITH_STBVORBIS)
std::size_t initialRead = sharedHeader ? sampleChunk.headerSize : headerChunk.GetLength();
#endif // MPT_WITH_STBVORBIS
#endif // MPT_WITH_VORBIS && MPT_WITH_VORBISFILE
headerChunk.Rewind();
if(sharedHeader && !headerChunk.CanRead(sampleChunk.headerSize))
continue;
#if defined(MPT_WITH_VORBIS) && defined(MPT_WITH_VORBISFILE)
ov_callbacks callbacks = {
&VorbisfileFilereaderRead,
&VorbisfileFilereaderSeek,
nullptr,
&VorbisfileFilereaderTell};
OggVorbis_File vf;
MemsetZero(vf);
if(ov_open_callbacks(&sampleData, &vf, nullptr, 0, callbacks) == 0)
{
if(ov_streams(&vf) == 1)
{ // we do not support chained vorbis samples
vorbis_info *vi = ov_info(&vf, -1);
if(vi && vi->rate > 0 && vi->channels > 0)
{
ModSample &sample = Samples[smp];
sample.AllocateSample();
SmpLength offset = 0;
int channels = vi->channels;
int current_section = 0;
long decodedSamples = 0;
bool eof = false;
while(!eof && offset < sample.nLength && sample.HasSampleData())
{
float **output = nullptr;
long ret = ov_read_float(&vf, &output, 1024, &current_section);
if(ret == 0)
{
eof = true;
} else if(ret < 0)
{
// stream error, just try to continue
} else
{
decodedSamples = ret;
LimitMax(decodedSamples, mpt::saturate_cast<long>(sample.nLength - offset));
if(decodedSamples > 0 && channels == sample.GetNumChannels())
{
if(sample.uFlags[CHN_16BIT])
{
CopyAudio(mpt::audio_span_interleaved(sample.sample16() + (offset * sample.GetNumChannels()), sample.GetNumChannels(), decodedSamples), mpt::audio_span_planar(output, channels, decodedSamples));
} else
{
CopyAudio(mpt::audio_span_interleaved(sample.sample8() + (offset * sample.GetNumChannels()), sample.GetNumChannels(), decodedSamples), mpt::audio_span_planar(output, channels, decodedSamples));
}
}
offset += decodedSamples;
}
}
} else
{
unsupportedSamples = true;
}
} else
{
AddToLog(LogWarning, MPT_UFORMAT("Sample {}: Unsupported Ogg Vorbis chained stream found.")(smp));
unsupportedSamples = true;
}
ov_clear(&vf);
} else
{
unsupportedSamples = true;
}
#elif defined(MPT_WITH_STBVORBIS)
// NOTE/TODO: stb_vorbis does not handle inferred negative PCM sample
// position at stream start. (See
// <https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-132000A.2>).
// This means that, for remuxed and re-aligned/cutted (at stream start)
// Vorbis files, stb_vorbis will include superfluous samples at the
// beginning. MO3 files with this property are yet to be spotted in the
// wild, thus, this behaviour is currently not problematic.
int consumed = 0, error = 0;
stb_vorbis *vorb = nullptr;
if(sharedHeader)
{
FileReader::PinnedView headChunkView = headerChunk.GetPinnedView(initialRead);
vorb = stb_vorbis_open_pushdata(mpt::byte_cast<const unsigned char *>(headChunkView.data()), mpt::saturate_cast<int>(headChunkView.size()), &consumed, &error, nullptr);
headerChunk.Skip(consumed);
}
FileReader::PinnedView sampleDataView = sampleData.GetPinnedView();
const std::byte *data = sampleDataView.data();
std::size_t dataLeft = sampleDataView.size();
if(!sharedHeader)
{
vorb = stb_vorbis_open_pushdata(mpt::byte_cast<const unsigned char *>(data), mpt::saturate_cast<int>(dataLeft), &consumed, &error, nullptr);
sampleData.Skip(consumed);
data += consumed;
dataLeft -= consumed;
}
if(vorb)
{
// Header has been read, proceed to reading the sample data
ModSample &sample = Samples[smp];
sample.AllocateSample();
SmpLength offset = 0;
while((error == VORBIS__no_error || (error == VORBIS_need_more_data && dataLeft > 0))
&& offset < sample.nLength && sample.HasSampleData())
{
int channels = 0, decodedSamples = 0;
float **output;
consumed = stb_vorbis_decode_frame_pushdata(vorb, mpt::byte_cast<const unsigned char *>(data), mpt::saturate_cast<int>(dataLeft), &channels, &output, &decodedSamples);
sampleData.Skip(consumed);
data += consumed;
dataLeft -= consumed;
LimitMax(decodedSamples, mpt::saturate_cast<int>(sample.nLength - offset));
if(decodedSamples > 0 && channels == sample.GetNumChannels())
{
if(sample.uFlags[CHN_16BIT])
{
CopyAudio(mpt::audio_span_interleaved(sample.sample16() + (offset * sample.GetNumChannels()), sample.GetNumChannels(), decodedSamples), mpt::audio_span_planar(output, channels, decodedSamples));
} else
{
CopyAudio(mpt::audio_span_interleaved(sample.sample8() + (offset * sample.GetNumChannels()), sample.GetNumChannels(), decodedSamples), mpt::audio_span_planar(output, channels, decodedSamples));
}
}
offset += decodedSamples;
error = stb_vorbis_get_error(vorb);
}
stb_vorbis_close(vorb);
} else
{
unsupportedSamples = true;
}
#else // !VORBIS
unsupportedSamples = true;
#endif // VORBIS
}
}
if(m_nType == MOD_TYPE_XM)
{
// Transfer XM instrument vibrato to samples
for(INSTRUMENTINDEX ins = 0; ins < m_nInstruments; ins++)
{
PropagateXMAutoVibrato(ins + 1, static_cast<VibratoType>(instrVibrato[ins].type.get()), instrVibrato[ins].sweep, instrVibrato[ins].depth, instrVibrato[ins].rate);
}
}
if((fileHeader.flags & MO3FileHeader::hasPlugins) && musicChunk.CanRead(1))
{
// Plugin data
uint8 pluginFlags = musicChunk.ReadUint8();
if(pluginFlags & 1)
{
// Channel plugins
for(CHANNELINDEX chn = 0; chn < m_nChannels; chn++)
{
ChnSettings[chn].nMixPlugin = static_cast<PLUGINDEX>(musicChunk.ReadUint32LE());
}
}
while(musicChunk.CanRead(1))
{
PLUGINDEX plug = musicChunk.ReadUint8();
if(!plug)
break;
FileReader pluginChunk = musicChunk.ReadChunk(musicChunk.ReadUint32LE());
#ifndef NO_PLUGINS
if(plug <= MAX_MIXPLUGINS)
{
ReadMixPluginChunk(pluginChunk, m_MixPlugins[plug - 1]);
}
#endif // NO_PLUGINS
}
}
mpt::ustring madeWithTracker;
uint16 cwtv = 0;
uint16 cmwt = 0;
while(musicChunk.CanRead(8))
{
uint32 id = musicChunk.ReadUint32LE();
uint32 len = musicChunk.ReadUint32LE();
FileReader chunk = musicChunk.ReadChunk(len);
switch(id)
{
case MagicLE("VERS"):
// Tracker magic bytes (depending on format)
switch(m_nType)
{
case MOD_TYPE_IT:
cwtv = chunk.ReadUint16LE();
cmwt = chunk.ReadUint16LE();
/*switch(cwtv >> 12)
{
}*/
break;
case MOD_TYPE_S3M:
cwtv = chunk.ReadUint16LE();
break;
case MOD_TYPE_XM:
chunk.ReadString<mpt::String::spacePadded>(madeWithTracker, mpt::Charset::CP437, std::min(FileReader::off_t(32), chunk.GetLength()));
break;
case MOD_TYPE_MTM:
{
uint8 mtmVersion = chunk.ReadUint8();
madeWithTracker = MPT_UFORMAT("MultiTracker {}.{}")(mtmVersion >> 4, mtmVersion & 0x0F);
}
break;
default:
break;
}
break;
case MagicLE("PRHI"):
m_nDefaultRowsPerBeat = chunk.ReadUint8();
m_nDefaultRowsPerMeasure = chunk.ReadUint8();
break;
case MagicLE("MIDI"):
// Full MIDI config
chunk.ReadStruct<MIDIMacroConfigData>(m_MidiCfg);
m_MidiCfg.Sanitize();
break;
case MagicLE("OMPT"):
// Read pattern names: "PNAM"
if(chunk.ReadMagic("PNAM"))
{
FileReader patterns = chunk.ReadChunk(chunk.ReadUint32LE());
const PATTERNINDEX namedPats = std::min(static_cast<PATTERNINDEX>(patterns.GetLength() / MAX_PATTERNNAME), Patterns.Size());
for(PATTERNINDEX pat = 0; pat < namedPats; pat++)
{
char patName[MAX_PATTERNNAME];
patterns.ReadString<mpt::String::maybeNullTerminated>(patName, MAX_PATTERNNAME);
Patterns[pat].SetName(patName);
}
}
// Read channel names: "CNAM"
if(chunk.ReadMagic("CNAM"))
{
FileReader channels = chunk.ReadChunk(chunk.ReadUint32LE());
const CHANNELINDEX namedChans = std::min(static_cast<CHANNELINDEX>(channels.GetLength() / MAX_CHANNELNAME), GetNumChannels());
for(CHANNELINDEX chn = 0; chn < namedChans; chn++)
{
channels.ReadString<mpt::String::maybeNullTerminated>(ChnSettings[chn].szName, MAX_CHANNELNAME);
}
}
LoadExtendedInstrumentProperties(chunk);
LoadExtendedSongProperties(chunk, true);
if(cwtv > 0x0889 && cwtv <= 0x8FF)
{
m_nType = MOD_TYPE_MPT;
LoadMPTMProperties(chunk, cwtv);
}
if(m_dwLastSavedWithVersion)
{
madeWithTracker = U_("OpenMPT ") + mpt::ufmt::val(m_dwLastSavedWithVersion);
}
break;
}
}
if((GetType() == MOD_TYPE_IT && cwtv >= 0x0100 && cwtv < 0x0214)
|| (GetType() == MOD_TYPE_S3M && cwtv >= 0x3100 && cwtv < 0x3214)
|| (GetType() == MOD_TYPE_S3M && cwtv >= 0x1300 && cwtv < 0x1320))
{
// Ignore MIDI data in files made with IT older than version 2.14 and old ST3 versions.
m_MidiCfg.ClearZxxMacros();
}
if(fileHeader.flags & MO3FileHeader::modplugMode)
{
// Apply some old ModPlug (mis-)behaviour
if(!m_dwLastSavedWithVersion)
{
// These fixes are only applied when the OpenMPT version number is not known, as otherwise the song upgrade feature will take care of it.
for(INSTRUMENTINDEX i = 1; i <= GetNumInstruments(); i++)
{
if(ModInstrument *ins = Instruments[i])
{
// Fix pitch / filter envelope being shortened by one tick (for files before v1.20)
ins->GetEnvelope(ENV_PITCH).Convert(MOD_TYPE_XM, GetType());
// Fix excessive pan swing range (for files before v1.26)
ins->nPanSwing = (ins->nPanSwing + 3) / 4u;
}
}
}
if(m_dwLastSavedWithVersion < MPT_V("1.18.00.00"))
{
m_playBehaviour.reset(kITOffset);
m_playBehaviour.reset(kFT2ST3OffsetOutOfRange);
}
if(m_dwLastSavedWithVersion < MPT_V("1.23.00.00"))
m_playBehaviour.reset(kFT2Periods);
if(m_dwLastSavedWithVersion < MPT_V("1.26.00.00"))
m_playBehaviour.reset(kITInstrWithNoteOff);
}
if(madeWithTracker.empty())
madeWithTracker = MPT_UFORMAT("MO3 v{}")(version);
else
madeWithTracker = MPT_UFORMAT("MO3 v{} ({})")(version, madeWithTracker);
m_modFormat.formatName = MPT_UFORMAT("Un4seen MO3 v{}")(version);
m_modFormat.type = U_("mo3");
switch(GetType())
{
case MOD_TYPE_MTM:
m_modFormat.originalType = U_("mtm");
m_modFormat.originalFormatName = U_("MultiTracker");
break;
case MOD_TYPE_MOD:
m_modFormat.originalType = U_("mod");
m_modFormat.originalFormatName = U_("Generic MOD");
break;
case MOD_TYPE_XM:
m_modFormat.originalType = U_("xm");
m_modFormat.originalFormatName = U_("FastTracker 2");
break;
case MOD_TYPE_S3M:
m_modFormat.originalType = U_("s3m");
m_modFormat.originalFormatName = U_("Scream Tracker 3");
break;
case MOD_TYPE_IT:
m_modFormat.originalType = U_("it");
if(cmwt)
m_modFormat.originalFormatName = MPT_UFORMAT("Impulse Tracker {}.{}")(cmwt >> 8, mpt::ufmt::hex0<2>(cmwt & 0xFF));
else
m_modFormat.originalFormatName = U_("Impulse Tracker");
break;
case MOD_TYPE_MPT:
m_modFormat.originalType = U_("mptm");
m_modFormat.originalFormatName = U_("OpenMPT MPTM");
break;
default:
MPT_ASSERT_NOTREACHED();
}
m_modFormat.madeWithTracker = std::move(madeWithTracker);
if(m_dwLastSavedWithVersion)
m_modFormat.charset = mpt::Charset::Windows1252;
else if(GetType() == MOD_TYPE_MOD)
m_modFormat.charset = mpt::Charset::Amiga_no_C1;
else
m_modFormat.charset = mpt::Charset::CP437;
if(unsupportedSamples)
{
AddToLog(LogWarning, U_("Some compressed samples could not be loaded because they use an unsupported codec."));
}
return true;
}
OPENMPT_NAMESPACE_END