winamp/Src/external_dependencies/openmpt-trunk/soundlib/load_j2b.cpp

1077 lines
28 KiB
C++
Raw Permalink Normal View History

2024-09-24 12:54:57 +00:00
/*
* load_j2b.cpp
* ------------
* Purpose: RIFF AM and RIFF AMFF (Galaxy Sound System) module loader
* Notes : J2B is a compressed variant of RIFF AM and RIFF AMFF files used in Jazz Jackrabbit 2.
* It seems like no other game used the AM(FF) format.
* RIFF AM is the newer version of the format, generally following the RIFF "standard" closely.
* Authors: Johannes Schultz (OpenMPT port, reverse engineering + loader implementation of the instrument format)
* kode54 (foo_dumb - this is almost a complete port of his code, thanks)
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "mpt/io/base.hpp"
#if defined(MPT_WITH_ZLIB)
#include <zlib.h>
#elif defined(MPT_WITH_MINIZ)
#include <miniz/miniz.h>
#endif
#ifdef MPT_ALL_LOGGING
#define J2B_LOG
#endif
OPENMPT_NAMESPACE_BEGIN
// First off, a nice vibrato translation LUT.
static constexpr VibratoType j2bAutoVibratoTrans[] =
{
VIB_SINE, VIB_SQUARE, VIB_RAMP_UP, VIB_RAMP_DOWN, VIB_RANDOM,
};
// header for compressed j2b files
struct J2BFileHeader
{
// Magic Bytes
// 32-Bit J2B header identifiers
enum : uint32 {
magicDEADBEAF = 0xAFBEADDEu,
magicDEADBABE = 0xBEBAADDEu
};
char signature[4]; // MUSE
uint32le deadbeaf; // 0xDEADBEAF (AM) or 0xDEADBABE (AMFF)
uint32le fileLength; // complete filesize
uint32le crc32; // checksum of the compressed data block
uint32le packedLength; // length of the compressed data block
uint32le unpackedLength; // length of the decompressed module
};
MPT_BINARY_STRUCT(J2BFileHeader, 24)
// AM(FF) stuff
struct AMFFRiffChunk
{
// 32-Bit chunk identifiers
enum ChunkIdentifiers
{
idRIFF = MagicLE("RIFF"),
idAMFF = MagicLE("AMFF"),
idAM__ = MagicLE("AM "),
idMAIN = MagicLE("MAIN"),
idINIT = MagicLE("INIT"),
idORDR = MagicLE("ORDR"),
idPATT = MagicLE("PATT"),
idINST = MagicLE("INST"),
idSAMP = MagicLE("SAMP"),
idAI__ = MagicLE("AI "),
idAS__ = MagicLE("AS "),
};
uint32le id; // See ChunkIdentifiers
uint32le length; // Chunk size without header
size_t GetLength() const
{
return length;
}
ChunkIdentifiers GetID() const
{
return static_cast<ChunkIdentifiers>(id.get());
}
};
MPT_BINARY_STRUCT(AMFFRiffChunk, 8)
// This header is used for both AM's "INIT" as well as AMFF's "MAIN" chunk
struct AMFFMainChunk
{
// Main Chunk flags
enum MainFlags
{
amigaSlides = 0x01,
};
char songname[64];
uint8le flags;
uint8le channels;
uint8le speed;
uint8le tempo;
uint16le minPeriod; // 16x Amiga periods, but we should ignore them - otherwise some high notes in Medivo.j2b won't sound correct.
uint16le maxPeriod; // Ditto
uint8le globalvolume;
};
MPT_BINARY_STRUCT(AMFFMainChunk, 73)
// AMFF instrument envelope (old format)
struct AMFFEnvelope
{
// Envelope flags (also used for RIFF AM)
enum EnvelopeFlags
{
envEnabled = 0x01,
envSustain = 0x02,
envLoop = 0x04,
};
struct EnvPoint
{
uint16le tick;
uint8le value; // 0...64
};
uint8le envFlags; // high nibble = pan env flags, low nibble = vol env flags (both nibbles work the same way)
uint8le envNumPoints; // high nibble = pan env length, low nibble = vol env length
uint8le envSustainPoints; // you guessed it... high nibble = pan env sustain point, low nibble = vol env sustain point
uint8le envLoopStarts; // I guess you know the pattern now.
uint8le envLoopEnds; // same here.
EnvPoint volEnv[10];
EnvPoint panEnv[10];
// Convert weird envelope data to OpenMPT's internal format.
void ConvertEnvelope(uint8 flags, uint8 numPoints, uint8 sustainPoint, uint8 loopStart, uint8 loopEnd, const EnvPoint (&points)[10], InstrumentEnvelope &mptEnv) const
{
// The buggy mod2j2b converter will actually NOT limit this to 10 points if the envelope is longer.
mptEnv.resize(std::min(numPoints, static_cast<uint8>(10)));
mptEnv.nSustainStart = mptEnv.nSustainEnd = sustainPoint;
mptEnv.nLoopStart = loopStart;
mptEnv.nLoopEnd = loopEnd;
for(uint32 i = 0; i < mptEnv.size(); i++)
{
mptEnv[i].tick = points[i].tick >> 4;
if(i == 0)
mptEnv[0].tick = 0;
else if(mptEnv[i].tick < mptEnv[i - 1].tick)
mptEnv[i].tick = mptEnv[i - 1].tick + 1;
mptEnv[i].value = Clamp<uint8, uint8>(points[i].value, 0, 64);
}
mptEnv.dwFlags.set(ENV_ENABLED, (flags & AMFFEnvelope::envEnabled) != 0);
mptEnv.dwFlags.set(ENV_SUSTAIN, (flags & AMFFEnvelope::envSustain) && mptEnv.nSustainStart <= mptEnv.size());
mptEnv.dwFlags.set(ENV_LOOP, (flags & AMFFEnvelope::envLoop) && mptEnv.nLoopStart <= mptEnv.nLoopEnd && mptEnv.nLoopStart <= mptEnv.size());
}
void ConvertToMPT(ModInstrument &mptIns) const
{
// interleaved envelope data... meh. gotta split it up here and decode it separately.
// note: mod2j2b is BUGGY and always writes ($original_num_points & 0x0F) in the header,
// but just has room for 10 envelope points. That means that long (>= 16 points)
// envelopes are cut off, and envelopes have to be trimmed to 10 points, even if
// the header claims that they are longer.
// For XM files the number of points also appears to be off by one,
// but luckily there are no official J2Bs using envelopes anyway.
ConvertEnvelope(envFlags & 0x0F, envNumPoints & 0x0F, envSustainPoints & 0x0F, envLoopStarts & 0x0F, envLoopEnds & 0x0F, volEnv, mptIns.VolEnv);
ConvertEnvelope(envFlags >> 4, envNumPoints >> 4, envSustainPoints >> 4, envLoopStarts >> 4, envLoopEnds >> 4, panEnv, mptIns.PanEnv);
}
};
MPT_BINARY_STRUCT(AMFFEnvelope::EnvPoint, 3)
MPT_BINARY_STRUCT(AMFFEnvelope, 65)
// AMFF instrument header (old format)
struct AMFFInstrumentHeader
{
uint8le unknown; // 0x00
uint8le index; // actual instrument number
char name[28];
uint8le numSamples;
uint8le sampleMap[120];
uint8le vibratoType;
uint16le vibratoSweep;
uint16le vibratoDepth;
uint16le vibratoRate;
AMFFEnvelope envelopes;
uint16le fadeout;
// Convert instrument data to OpenMPT's internal format.
void ConvertToMPT(ModInstrument &mptIns, SAMPLEINDEX baseSample)
{
mptIns.name = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, name);
static_assert(mpt::array_size<decltype(sampleMap)>::size <= mpt::array_size<decltype(mptIns.Keyboard)>::size);
for(size_t i = 0; i < std::size(sampleMap); i++)
{
mptIns.Keyboard[i] = sampleMap[i] + baseSample + 1;
}
mptIns.nFadeOut = fadeout << 5;
envelopes.ConvertToMPT(mptIns);
}
};
MPT_BINARY_STRUCT(AMFFInstrumentHeader, 225)
// AMFF sample header (old format)
struct AMFFSampleHeader
{
// Sample flags (also used for RIFF AM)
enum SampleFlags
{
smp16Bit = 0x04,
smpLoop = 0x08,
smpPingPong = 0x10,
smpPanning = 0x20,
smpExists = 0x80,
// some flags are still missing... what is e.g. 0x8000?
};
uint32le id; // "SAMP"
uint32le chunkSize; // header + sample size
char name[28];
uint8le pan;
uint8le volume;
uint16le flags;
uint32le length;
uint32le loopStart;
uint32le loopEnd;
uint32le sampleRate;
uint32le reserved1;
uint32le reserved2;
// Convert sample header to OpenMPT's internal format.
void ConvertToMPT(AMFFInstrumentHeader &instrHeader, ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.nPan = pan * 4;
mptSmp.nVolume = volume * 4;
mptSmp.nGlobalVol = 64;
mptSmp.nLength = length;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
mptSmp.nC5Speed = sampleRate;
if(instrHeader.vibratoType < std::size(j2bAutoVibratoTrans))
mptSmp.nVibType = j2bAutoVibratoTrans[instrHeader.vibratoType];
mptSmp.nVibSweep = static_cast<uint8>(instrHeader.vibratoSweep);
mptSmp.nVibRate = static_cast<uint8>(instrHeader.vibratoRate / 16);
mptSmp.nVibDepth = static_cast<uint8>(instrHeader.vibratoDepth / 4);
if((mptSmp.nVibRate | mptSmp.nVibDepth) != 0)
{
// Convert XM-style vibrato sweep to IT
mptSmp.nVibSweep = 255 - mptSmp.nVibSweep;
}
if(flags & AMFFSampleHeader::smp16Bit)
mptSmp.uFlags.set(CHN_16BIT);
if(flags & AMFFSampleHeader::smpLoop)
mptSmp.uFlags.set(CHN_LOOP);
if(flags & AMFFSampleHeader::smpPingPong)
mptSmp.uFlags.set(CHN_PINGPONGLOOP);
if(flags & AMFFSampleHeader::smpPanning)
mptSmp.uFlags.set(CHN_PANNING);
}
// Retrieve the internal sample format flags for this sample.
SampleIO GetSampleFormat() const
{
return SampleIO(
(flags & AMFFSampleHeader::smp16Bit) ? SampleIO::_16bit : SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
SampleIO::signedPCM);
}
};
MPT_BINARY_STRUCT(AMFFSampleHeader, 64)
// AM instrument envelope (new format)
struct AMEnvelope
{
struct EnvPoint
{
uint16le tick;
int16le value;
};
uint16le flags;
uint8le numPoints; // actually, it's num. points - 1, and 0xFF if there is no envelope
uint8le sustainPoint;
uint8le loopStart;
uint8le loopEnd;
EnvPoint values[10];
uint16le fadeout; // why is this here? it's only needed for the volume envelope...
// Convert envelope data to OpenMPT's internal format.
void ConvertToMPT(InstrumentEnvelope &mptEnv, EnvelopeType envType) const
{
if(numPoints == 0xFF || numPoints == 0)
return;
mptEnv.resize(std::min(numPoints + 1, 10));
mptEnv.nSustainStart = mptEnv.nSustainEnd = sustainPoint;
mptEnv.nLoopStart = loopStart;
mptEnv.nLoopEnd = loopEnd;
int32 scale = 0, offset = 0;
switch(envType)
{
case ENV_VOLUME: // 0....32767
default:
scale = 32767 / ENVELOPE_MAX;
break;
case ENV_PITCH: // -4096....4096
scale = 8192 / ENVELOPE_MAX;
offset = 4096;
break;
case ENV_PANNING: // -32768...32767
scale = 65536 / ENVELOPE_MAX;
offset = 32768;
break;
}
for(uint32 i = 0; i < mptEnv.size(); i++)
{
mptEnv[i].tick = values[i].tick >> 4;
if(i == 0)
mptEnv[i].tick = 0;
else if(mptEnv[i].tick < mptEnv[i - 1].tick)
mptEnv[i].tick = mptEnv[i - 1].tick + 1;
int32 val = values[i].value + offset;
val = (val + scale / 2) / scale;
mptEnv[i].value = static_cast<EnvelopeNode::value_t>(std::clamp(val, int32(ENVELOPE_MIN), int32(ENVELOPE_MAX)));
}
mptEnv.dwFlags.set(ENV_ENABLED, (flags & AMFFEnvelope::envEnabled) != 0);
mptEnv.dwFlags.set(ENV_SUSTAIN, (flags & AMFFEnvelope::envSustain) && mptEnv.nSustainStart <= mptEnv.size());
mptEnv.dwFlags.set(ENV_LOOP, (flags & AMFFEnvelope::envLoop) && mptEnv.nLoopStart <= mptEnv.nLoopEnd && mptEnv.nLoopStart <= mptEnv.size());
}
};
MPT_BINARY_STRUCT(AMEnvelope::EnvPoint, 4)
MPT_BINARY_STRUCT(AMEnvelope, 48)
// AM instrument header (new format)
struct AMInstrumentHeader
{
uint32le headSize; // Header size (i.e. the size of this struct)
uint8le unknown1; // 0x00
uint8le index; // Actual instrument number
char name[32];
uint8le sampleMap[128];
uint8le vibratoType;
uint16le vibratoSweep;
uint16le vibratoDepth;
uint16le vibratoRate;
uint8le unknown2[7];
AMEnvelope volEnv;
AMEnvelope pitchEnv;
AMEnvelope panEnv;
uint16le numSamples;
// Convert instrument data to OpenMPT's internal format.
void ConvertToMPT(ModInstrument &mptIns, SAMPLEINDEX baseSample)
{
mptIns.name = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, name);
static_assert(mpt::array_size<decltype(sampleMap)>::size <= mpt::array_size<decltype(mptIns.Keyboard)>::size);
for(uint8 i = 0; i < std::size(sampleMap); i++)
{
mptIns.Keyboard[i] = sampleMap[i] + baseSample + 1;
}
mptIns.nFadeOut = volEnv.fadeout << 5;
volEnv.ConvertToMPT(mptIns.VolEnv, ENV_VOLUME);
pitchEnv.ConvertToMPT(mptIns.PitchEnv, ENV_PITCH);
panEnv.ConvertToMPT(mptIns.PanEnv, ENV_PANNING);
if(numSamples == 0)
{
MemsetZero(mptIns.Keyboard);
}
}
};
MPT_BINARY_STRUCT(AMInstrumentHeader, 326)
// AM sample header (new format)
struct AMSampleHeader
{
uint32le headSize; // Header size (i.e. the size of this struct), apparently not including headSize.
char name[32];
uint16le pan;
uint16le volume;
uint16le flags;
uint16le unknown; // 0x0000 / 0x0080?
uint32le length;
uint32le loopStart;
uint32le loopEnd;
uint32le sampleRate;
// Convert sample header to OpenMPT's internal format.
void ConvertToMPT(AMInstrumentHeader &instrHeader, ModSample &mptSmp) const
{
mptSmp.Initialize();
mptSmp.nPan = std::min(pan.get(), uint16(32767)) * 256 / 32767;
mptSmp.nVolume = std::min(volume.get(), uint16(32767)) * 256 / 32767;
mptSmp.nGlobalVol = 64;
mptSmp.nLength = length;
mptSmp.nLoopStart = loopStart;
mptSmp.nLoopEnd = loopEnd;
mptSmp.nC5Speed = sampleRate;
if(instrHeader.vibratoType < std::size(j2bAutoVibratoTrans))
mptSmp.nVibType = j2bAutoVibratoTrans[instrHeader.vibratoType];
mptSmp.nVibSweep = static_cast<uint8>(instrHeader.vibratoSweep);
mptSmp.nVibRate = static_cast<uint8>(instrHeader.vibratoRate / 16);
mptSmp.nVibDepth = static_cast<uint8>(instrHeader.vibratoDepth / 4);
if((mptSmp.nVibRate | mptSmp.nVibDepth) != 0)
{
// Convert XM-style vibrato sweep to IT
mptSmp.nVibSweep = 255 - mptSmp.nVibSweep;
}
if(flags & AMFFSampleHeader::smp16Bit)
mptSmp.uFlags.set(CHN_16BIT);
if(flags & AMFFSampleHeader::smpLoop)
mptSmp.uFlags.set(CHN_LOOP);
if(flags & AMFFSampleHeader::smpPingPong)
mptSmp.uFlags.set(CHN_PINGPONGLOOP);
if(flags & AMFFSampleHeader::smpPanning)
mptSmp.uFlags.set(CHN_PANNING);
}
// Retrieve the internal sample format flags for this sample.
SampleIO GetSampleFormat() const
{
return SampleIO(
(flags & AMFFSampleHeader::smp16Bit) ? SampleIO::_16bit : SampleIO::_8bit,
SampleIO::mono,
SampleIO::littleEndian,
SampleIO::signedPCM);
}
};
MPT_BINARY_STRUCT(AMSampleHeader, 60)
// Convert RIFF AM(FF) pattern data to MPT pattern data.
static bool ConvertAMPattern(FileReader chunk, PATTERNINDEX pat, bool isAM, CSoundFile &sndFile)
{
// Effect translation LUT
static constexpr EffectCommand amEffTrans[] =
{
CMD_ARPEGGIO, CMD_PORTAMENTOUP, CMD_PORTAMENTODOWN, CMD_TONEPORTAMENTO,
CMD_VIBRATO, CMD_TONEPORTAVOL, CMD_VIBRATOVOL, CMD_TREMOLO,
CMD_PANNING8, CMD_OFFSET, CMD_VOLUMESLIDE, CMD_POSITIONJUMP,
CMD_VOLUME, CMD_PATTERNBREAK, CMD_MODCMDEX, CMD_TEMPO,
CMD_GLOBALVOLUME, CMD_GLOBALVOLSLIDE, CMD_KEYOFF, CMD_SETENVPOSITION,
CMD_CHANNELVOLUME, CMD_CHANNELVOLSLIDE, CMD_PANNINGSLIDE, CMD_RETRIG,
CMD_TREMOR, CMD_XFINEPORTAUPDOWN,
};
enum
{
rowDone = 0, // Advance to next row
channelMask = 0x1F, // Mask for retrieving channel information
volFlag = 0x20, // Volume effect present
noteFlag = 0x40, // Note + instr present
effectFlag = 0x80, // Effect information present
dataFlag = 0xE0, // Channel data present
};
if(chunk.NoBytesLeft())
{
return false;
}
ROWINDEX numRows = Clamp(static_cast<ROWINDEX>(chunk.ReadUint8()) + 1, ROWINDEX(1), MAX_PATTERN_ROWS);
if(!sndFile.Patterns.Insert(pat, numRows))
return false;
const CHANNELINDEX channels = sndFile.GetNumChannels();
if(channels == 0)
return false;
ROWINDEX row = 0;
while(row < numRows && chunk.CanRead(1))
{
const uint8 flags = chunk.ReadUint8();
if(flags == rowDone)
{
row++;
continue;
}
ModCommand &m = *sndFile.Patterns[pat].GetpModCommand(row, std::min(static_cast<CHANNELINDEX>(flags & channelMask), static_cast<CHANNELINDEX>(channels - 1)));
if(flags & dataFlag)
{
if(flags & effectFlag) // effect
{
m.param = chunk.ReadUint8();
uint8 command = chunk.ReadUint8();
if(command < std::size(amEffTrans))
{
// command translation
m.command = amEffTrans[command];
} else
{
#ifdef J2B_LOG
MPT_LOG_GLOBAL(LogDebug, "J2B", MPT_UFORMAT("J2B: Unknown command: 0x{}, param 0x{}")(mpt::ufmt::HEX0<2>(command), mpt::ufmt::HEX0<2>(m.param)));
#endif
m.command = CMD_NONE;
}
// Handling special commands
switch(m.command)
{
case CMD_ARPEGGIO:
if(m.param == 0) m.command = CMD_NONE;
break;
case CMD_VOLUME:
if(m.volcmd == VOLCMD_NONE)
{
m.volcmd = VOLCMD_VOLUME;
m.vol = Clamp(m.param, uint8(0), uint8(64));
m.command = CMD_NONE;
m.param = 0;
}
break;
case CMD_TONEPORTAVOL:
case CMD_VIBRATOVOL:
case CMD_VOLUMESLIDE:
case CMD_GLOBALVOLSLIDE:
case CMD_PANNINGSLIDE:
if (m.param & 0xF0) m.param &= 0xF0;
break;
case CMD_PANNING8:
if(m.param <= 0x80) m.param = mpt::saturate_cast<uint8>(m.param * 2);
else if(m.param == 0xA4) {m.command = CMD_S3MCMDEX; m.param = 0x91;}
break;
case CMD_PATTERNBREAK:
m.param = ((m.param >> 4) * 10) + (m.param & 0x0F);
break;
case CMD_MODCMDEX:
m.ExtendedMODtoS3MEffect();
break;
case CMD_TEMPO:
if(m.param <= 0x1F) m.command = CMD_SPEED;
break;
case CMD_XFINEPORTAUPDOWN:
switch(m.param & 0xF0)
{
case 0x10:
m.command = CMD_PORTAMENTOUP;
break;
case 0x20:
m.command = CMD_PORTAMENTODOWN;
break;
}
m.param = (m.param & 0x0F) | 0xE0;
break;
}
}
if (flags & noteFlag) // note + ins
{
const auto [instr, note] = chunk.ReadArray<uint8, 2>();
m.instr = instr;
m.note = note;
if(m.note == 0x80) m.note = NOTE_KEYOFF;
else if(m.note > 0x80) m.note = NOTE_FADE; // I guess the support for IT "note fade" notes was not intended in mod2j2b, but hey, it works! :-D
}
if (flags & volFlag) // volume
{
m.volcmd = VOLCMD_VOLUME;
m.vol = chunk.ReadUint8();
if(isAM)
{
m.vol = m.vol * 64 / 127;
}
}
}
}
return true;
}
struct AMFFRiffChunkFormat
{
uint32le format;
};
MPT_BINARY_STRUCT(AMFFRiffChunkFormat, 4)
static bool ValidateHeader(const AMFFRiffChunk &fileHeader)
{
if(fileHeader.id != AMFFRiffChunk::idRIFF)
{
return false;
}
if(fileHeader.GetLength() < 8 + sizeof(AMFFMainChunk))
{
return false;
}
return true;
}
static bool ValidateHeader(const AMFFRiffChunkFormat &formatHeader)
{
if(formatHeader.format != AMFFRiffChunk::idAMFF && formatHeader.format != AMFFRiffChunk::idAM__)
{
return false;
}
return true;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderAM(MemoryFileReader file, const uint64 *pfilesize)
{
AMFFRiffChunk fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
AMFFRiffChunkFormat formatHeader;
if(!file.ReadStruct(formatHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(formatHeader))
{
return ProbeFailure;
}
MPT_UNREFERENCED_PARAMETER(pfilesize);
return ProbeSuccess;
}
bool CSoundFile::ReadAM(FileReader &file, ModLoadingFlags loadFlags)
{
file.Rewind();
AMFFRiffChunk fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
AMFFRiffChunkFormat formatHeader;
if(!file.ReadStruct(formatHeader))
{
return false;
}
if(!ValidateHeader(formatHeader))
{
return false;
}
bool isAM; // false: AMFF, true: AM
uint32 format = formatHeader.format;
if(format == AMFFRiffChunk::idAMFF)
isAM = false; // "AMFF"
else if(format == AMFFRiffChunk::idAM__)
isAM = true; // "AM "
else
return false;
ChunkReader chunkFile(file);
// The main chunk is almost identical in both formats but uses different chunk IDs.
// "MAIN" - Song info (AMFF)
// "INIT" - Song info (AM)
AMFFRiffChunk::ChunkIdentifiers mainChunkID = isAM ? AMFFRiffChunk::idINIT : AMFFRiffChunk::idMAIN;
// RIFF AM has a padding byte so that all chunks have an even size.
ChunkReader::ChunkList<AMFFRiffChunk> chunks;
if(loadFlags == onlyVerifyHeader)
chunks = chunkFile.ReadChunksUntil<AMFFRiffChunk>(isAM ? 2 : 1, mainChunkID);
else
chunks = chunkFile.ReadChunks<AMFFRiffChunk>(isAM ? 2 : 1);
FileReader chunkMain(chunks.GetChunk(mainChunkID));
AMFFMainChunk mainChunk;
if(!chunkMain.IsValid()
|| !chunkMain.ReadStruct(mainChunk)
|| mainChunk.channels < 1
|| !chunkMain.CanRead(mainChunk.channels))
{
return false;
} else if(loadFlags == onlyVerifyHeader)
{
return true;
}
InitializeGlobals(MOD_TYPE_J2B);
m_SongFlags = SONG_ITOLDEFFECTS | SONG_ITCOMPATGXX;
m_SongFlags.set(SONG_LINEARSLIDES, !(mainChunk.flags & AMFFMainChunk::amigaSlides));
m_nChannels = std::min(static_cast<CHANNELINDEX>(mainChunk.channels), static_cast<CHANNELINDEX>(MAX_BASECHANNELS));
m_nDefaultSpeed = mainChunk.speed;
m_nDefaultTempo.Set(mainChunk.tempo);
m_nDefaultGlobalVolume = mainChunk.globalvolume * 2;
m_modFormat.formatName = isAM ? UL_("Galaxy Sound System (new version)") : UL_("Galaxy Sound System (old version)");
m_modFormat.type = U_("j2b");
m_modFormat.charset = mpt::Charset::CP437;
m_songName = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, mainChunk.songname);
// It seems like there's no way to differentiate between
// Muted and Surround channels (they're all 0xA0) - might
// be a limitation in mod2j2b.
for(CHANNELINDEX nChn = 0; nChn < m_nChannels; nChn++)
{
ChnSettings[nChn].Reset();
uint8 pan = chunkMain.ReadUint8();
if(isAM)
{
if(pan > 128)
ChnSettings[nChn].dwFlags = CHN_MUTE;
else
ChnSettings[nChn].nPan = pan * 2;
} else
{
if(pan >= 128)
ChnSettings[nChn].dwFlags = CHN_MUTE;
else
ChnSettings[nChn].nPan = static_cast<uint16>(std::min(pan * 4, 256));
}
}
if(chunks.ChunkExists(AMFFRiffChunk::idORDR))
{
// "ORDR" - Order list
FileReader chunk(chunks.GetChunk(AMFFRiffChunk::idORDR));
uint8 numOrders = chunk.ReadUint8() + 1;
ReadOrderFromFile<uint8>(Order(), chunk, numOrders, 0xFF, 0xFE);
}
// "PATT" - Pattern data for one pattern
if(loadFlags & loadPatternData)
{
PATTERNINDEX maxPattern = 0;
auto pattChunks = chunks.GetAllChunks(AMFFRiffChunk::idPATT);
Patterns.ResizeArray(static_cast<PATTERNINDEX>(pattChunks.size()));
for(auto chunk : pattChunks)
{
PATTERNINDEX pat = chunk.ReadUint8();
size_t patternSize = chunk.ReadUint32LE();
ConvertAMPattern(chunk.ReadChunk(patternSize), pat, isAM, *this);
maxPattern = std::max(maxPattern, pat);
}
for(PATTERNINDEX pat = 0; pat < maxPattern; pat++)
{
if(!Patterns.IsValidPat(pat))
Patterns.Insert(pat, 64);
}
}
if(!isAM)
{
// "INST" - Instrument (only in RIFF AMFF)
auto instChunks = chunks.GetAllChunks(AMFFRiffChunk::idINST);
for(auto chunk : instChunks)
{
AMFFInstrumentHeader instrHeader;
if(!chunk.ReadStruct(instrHeader))
{
continue;
}
const INSTRUMENTINDEX instr = instrHeader.index + 1;
if(instr >= MAX_INSTRUMENTS)
continue;
ModInstrument *pIns = AllocateInstrument(instr);
if(pIns == nullptr)
{
continue;
}
instrHeader.ConvertToMPT(*pIns, m_nSamples);
// read sample sub-chunks - this is a rather "flat" format compared to RIFF AM and has no nested RIFF chunks.
for(size_t samples = 0; samples < instrHeader.numSamples; samples++)
{
AMFFSampleHeader sampleHeader;
if(!CanAddMoreSamples() || !chunk.ReadStruct(sampleHeader))
{
continue;
}
const SAMPLEINDEX smp = ++m_nSamples;
if(sampleHeader.id != AMFFRiffChunk::idSAMP)
{
continue;
}
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, sampleHeader.name);
sampleHeader.ConvertToMPT(instrHeader, Samples[smp]);
if(loadFlags & loadSampleData)
sampleHeader.GetSampleFormat().ReadSample(Samples[smp], chunk);
else
chunk.Skip(Samples[smp].GetSampleSizeInBytes());
}
}
} else
{
// "RIFF" - Instrument (only in RIFF AM)
auto instChunks = chunks.GetAllChunks(AMFFRiffChunk::idRIFF);
for(ChunkReader chunk : instChunks)
{
if(chunk.ReadUint32LE() != AMFFRiffChunk::idAI__)
{
continue;
}
AMFFRiffChunk instChunk;
if(!chunk.ReadStruct(instChunk) || instChunk.id != AMFFRiffChunk::idINST)
{
continue;
}
AMInstrumentHeader instrHeader;
if(!chunk.ReadStruct(instrHeader))
{
continue;
}
MPT_ASSERT(instrHeader.headSize + 4 == sizeof(instrHeader));
const INSTRUMENTINDEX instr = instrHeader.index + 1;
if(instr >= MAX_INSTRUMENTS)
continue;
ModInstrument *pIns = AllocateInstrument(instr);
if(pIns == nullptr)
{
continue;
}
instrHeader.ConvertToMPT(*pIns, m_nSamples);
// Read sample sub-chunks (RIFF nesting ftw)
auto sampleChunks = chunk.ReadChunks<AMFFRiffChunk>(2).GetAllChunks(AMFFRiffChunk::idRIFF);
MPT_ASSERT(sampleChunks.size() == instrHeader.numSamples);
for(auto sampleChunk : sampleChunks)
{
if(sampleChunk.ReadUint32LE() != AMFFRiffChunk::idAS__ || !CanAddMoreSamples())
{
continue;
}
// Don't read more samples than the instrument header claims to have.
if((instrHeader.numSamples--) == 0)
{
break;
}
const SAMPLEINDEX smp = ++m_nSamples;
// Aaand even more nested chunks! Great, innit?
AMFFRiffChunk sampleHeaderChunk;
if(!sampleChunk.ReadStruct(sampleHeaderChunk) || sampleHeaderChunk.id != AMFFRiffChunk::idSAMP)
{
break;
}
FileReader sampleFileChunk = sampleChunk.ReadChunk(sampleHeaderChunk.length);
AMSampleHeader sampleHeader;
if(!sampleFileChunk.ReadStruct(sampleHeader))
{
break;
}
m_szNames[smp] = mpt::String::ReadBuf(mpt::String::maybeNullTerminated, sampleHeader.name);
sampleHeader.ConvertToMPT(instrHeader, Samples[smp]);
if(loadFlags & loadSampleData)
{
sampleFileChunk.Seek(sampleHeader.headSize + 4);
sampleHeader.GetSampleFormat().ReadSample(Samples[smp], sampleFileChunk);
}
}
}
}
return true;
}
static bool ValidateHeader(const J2BFileHeader &fileHeader)
{
if(std::memcmp(fileHeader.signature, "MUSE", 4)
|| (fileHeader.deadbeaf != J2BFileHeader::magicDEADBEAF // 0xDEADBEAF (RIFF AM)
&& fileHeader.deadbeaf != J2BFileHeader::magicDEADBABE) // 0xDEADBABE (RIFF AMFF)
)
{
return false;
}
if(fileHeader.packedLength == 0)
{
return false;
}
if(fileHeader.fileLength != fileHeader.packedLength + sizeof(J2BFileHeader))
{
return false;
}
return true;
}
static bool ValidateHeaderFileSize(const J2BFileHeader &fileHeader, uint64 filesize)
{
if(filesize != fileHeader.fileLength)
{
return false;
}
return true;
}
CSoundFile::ProbeResult CSoundFile::ProbeFileHeaderJ2B(MemoryFileReader file, const uint64 *pfilesize)
{
J2BFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return ProbeWantMoreData;
}
if(!ValidateHeader(fileHeader))
{
return ProbeFailure;
}
if(pfilesize)
{
if(!ValidateHeaderFileSize(fileHeader, *pfilesize))
{
return ProbeFailure;
}
}
MPT_UNREFERENCED_PARAMETER(pfilesize);
return ProbeSuccess;
}
bool CSoundFile::ReadJ2B(FileReader &file, ModLoadingFlags loadFlags)
{
#if !defined(MPT_WITH_ZLIB) && !defined(MPT_WITH_MINIZ)
MPT_UNREFERENCED_PARAMETER(file);
MPT_UNREFERENCED_PARAMETER(loadFlags);
return false;
#else
file.Rewind();
J2BFileHeader fileHeader;
if(!file.ReadStruct(fileHeader))
{
return false;
}
if(!ValidateHeader(fileHeader))
{
return false;
}
if(fileHeader.fileLength != file.GetLength()
|| fileHeader.packedLength != file.BytesLeft()
)
{
return false;
}
if(loadFlags == onlyVerifyHeader)
{
return true;
}
// Header is valid, now unpack the RIFF AM file using inflate
z_stream strm{};
if(inflateInit(&strm) != Z_OK)
return false;
uint32 remainRead = fileHeader.packedLength, remainWrite = fileHeader.unpackedLength, totalWritten = 0;
uint32 crc = 0;
std::vector<Bytef> amFileData(remainWrite);
int retVal = Z_OK;
while(remainRead && remainWrite && retVal != Z_STREAM_END)
{
Bytef buffer[mpt::IO::BUFFERSIZE_TINY];
uint32 readSize = std::min(static_cast<uint32>(sizeof(buffer)), remainRead);
file.ReadRaw(mpt::span(buffer, readSize));
crc = crc32(crc, buffer, readSize);
strm.avail_in = readSize;
strm.next_in = buffer;
do
{
strm.avail_out = remainWrite;
strm.next_out = amFileData.data() + totalWritten;
retVal = inflate(&strm, Z_NO_FLUSH);
uint32 written = remainWrite - strm.avail_out;
totalWritten += written;
remainWrite -= written;
} while(remainWrite && strm.avail_out == 0);
remainRead -= readSize;
}
inflateEnd(&strm);
bool result = false;
#ifndef MPT_BUILD_FUZZER
if(fileHeader.crc32 == crc && !remainWrite && retVal == Z_STREAM_END)
#endif
{
// Success, now load the RIFF AM(FF) module.
FileReader amFile(mpt::as_span(amFileData));
result = ReadAM(amFile, loadFlags);
}
return result;
#endif
}
OPENMPT_NAMESPACE_END