winamp/Src/nu/RedBlackTree.cpp

641 lines
14 KiB
C++
Raw Permalink Normal View History

2024-09-24 12:54:57 +00:00
#include "RedBlackTree.h"
#include <limits>
#include "PtrList.h"
#ifdef min
#undef min
#endif
#ifdef max
#undef max
#endif
void RedBlackTreeIterator::next()
{
if (node)
node = tree->GetSuccessorOf(node);
}
bool RedBlackTreeIterator::get(RedBlackTreeIterator::val_t *val)
{
if (node)
{
*val = node->GetEntry();
return true;
}
return false;
}
RedBlackTreeNode::RedBlackTreeNode()
{
}
RedBlackTreeNode::RedBlackTreeNode(key_t _key, val_t newEntry)
: storedEntry(newEntry) , key(_key)
{
}
RedBlackTreeNode::~RedBlackTreeNode()
{
}
RedBlackTreeNode::val_t RedBlackTreeNode::GetEntry() const
{
return storedEntry;
}
RedBlackTree::RedBlackTree()
{
nil = new RedBlackTreeNode;
nil->left = nil->right = nil->parent = nil;
nil->red = 0;
nil->key = std::numeric_limits<key_t>::min();
nil->storedEntry = NULL;
root = new RedBlackTreeNode;
root->parent = root->left = root->right = nil;
root->key = std::numeric_limits<key_t>::max();
root->red=0;
root->storedEntry = NULL;
numElements = 0;
}
RedBlackTreeIterator RedBlackTree::end()
{
RedBlackTreeIterator temp;
return temp;
}
RedBlackTreeIterator RedBlackTree::begin()
{
return RedBlackTreeIterator(root->left, this);
}
/***********************************************************************/
/* FUNCTION: LeftRotate */
/**/
/* INPUTS: the node to rotate on */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input: this, x */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. */
/***********************************************************************/
void RedBlackTree::LeftRotate(RedBlackTreeNode* x)
{
RedBlackTreeNode* y;
/* I originally wrote this function to use the sentinel for */
/* nil to avoid checking for nil. However this introduces a */
/* very subtle bug because sometimes this function modifies */
/* the parent pointer of nil. This can be a problem if a */
/* function which calls LeftRotate also uses the nil sentinel */
/* and expects the nil sentinel's parent pointer to be unchanged */
/* after calling this function. For example, when DeleteFixUP */
/* calls LeftRotate it expects the parent pointer of nil to be */
/* unchanged. */
y=x->right;
x->right=y->left;
if (y->left != nil) y->left->parent=x; /* used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
y->parent=x->parent;
/* instead of checking if x->parent is the root as in the book, we */
/* count on the root sentinel to implicitly take care of this case */
if (x == x->parent->left)
{
x->parent->left=y;
}
else
{
x->parent->right=y;
}
y->left=x;
x->parent=y;
#ifdef CHECK_RB_TREE_ASSUMPTIONS
CheckAssumptions();
#elif defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not red in RedBlackTree::LeftRotate");
#endif
}
/***********************************************************************/
/* FUNCTION: RighttRotate */
/**/
/* INPUTS: node to rotate on */
/**/
/* OUTPUT: None */
/**/
/* Modifies Input?: this, y */
/**/
/* EFFECTS: Rotates as described in _Introduction_To_Algorithms by */
/* Cormen, Leiserson, Rivest (Chapter 14). Basically this */
/* makes the parent of x be to the left of x, x the parent of */
/* its parent before the rotation and fixes other pointers */
/* accordingly. */
/***********************************************************************/
void RedBlackTree::RightRotate(RedBlackTreeNode* y)
{
RedBlackTreeNode* x;
/* I originally wrote this function to use the sentinel for */
/* nil to avoid checking for nil. However this introduces a */
/* very subtle bug because sometimes this function modifies */
/* the parent pointer of nil. This can be a problem if a */
/* function which calls LeftRotate also uses the nil sentinel */
/* and expects the nil sentinel's parent pointer to be unchanged */
/* after calling this function. For example, when DeleteFixUP */
/* calls LeftRotate it expects the parent pointer of nil to be */
/* unchanged. */
x=y->left;
y->left=x->right;
if (nil != x->right) x->right->parent=y; /*used to use sentinel here */
/* and do an unconditional assignment instead of testing for nil */
/* instead of checking if x->parent is the root as in the book, we */
/* count on the root sentinel to implicitly take care of this case */
x->parent=y->parent;
if (y == y->parent->left)
{
y->parent->left=x;
}
else
{
y->parent->right=x;
}
x->right=y;
y->parent=x;
#ifdef CHECK_RB_TREE_ASSUMPTIONS
CheckAssumptions();
#elif defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not red in RedBlackTree::RightRotate");
#endif
}
/***********************************************************************/
/* FUNCTION: TreeInsertHelp */
/**/
/* INPUTS: z is the node to insert */
/**/
/* OUTPUT: none */
/**/
/* Modifies Input: this, z */
/**/
/* EFFECTS: Inserts z into the tree as if it were a regular binary tree */
/* using the algorithm described in _Introduction_To_Algorithms_ */
/* by Cormen et al. This funciton is only intended to be called */
/* by the Insert function and not by the user */
/***********************************************************************/
void RedBlackTree::TreeInsertHelp(RedBlackTreeNode* z)
{
/* This function should only be called by RedBlackTree::Insert */
RedBlackTreeNode* x;
RedBlackTreeNode* y;
z->left=z->right=nil;
y=root;
x=root->left;
while (x != nil)
{
y=x;
if (x->key > z->key)
{
x=x->left;
}
else /* x->key <= z->key */
{
x=x->right;
}
}
z->parent=y;
if ((y == root) ||
(y->key > z->key))
{
y->left=z;
}
else
{
y->right=z;
}
#if defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not red in RedBlackTree::TreeInsertHelp");
#endif
}
RedBlackTreeIterator RedBlackTree::Search(key_t key)
{
RedBlackTreeNode* x;
x=root->left;
while (x != nil)
{
if (x->key > key)
{
x=x->left;
}
else if (x->key < key)
{
x=x->right;
}
else
{
return RedBlackTreeIterator(x, this);
}
}
return end();
}
/* Before calling InsertNode the node x should have its key set */
/***********************************************************************/
/* FUNCTION: InsertNode */
/**/
/* INPUTS: newEntry is the entry to insert*/
/**/
/* OUTPUT: This function returns a pointer to the newly inserted node */
/* which is guarunteed to be valid until this node is deleted. */
/* What this means is if another data structure stores this */
/* pointer then the tree does not need to be searched when this */
/* is to be deleted. */
/**/
/* Modifies Input: tree */
/**/
/* EFFECTS: Creates a node node which contains the appropriate key and */
/* info pointers and inserts it into the tree. */
/***********************************************************************/
RedBlackTreeIterator RedBlackTree::Insert(key_t _key, val_t newEntry)
{
RedBlackTreeNode * y;
RedBlackTreeNode * x;
RedBlackTreeNode * newNode;
x = new RedBlackTreeNode(_key, newEntry);
TreeInsertHelp(x);
newNode = x;
x->red=1;
while (x->parent->red) /* use sentinel instead of checking for root */
{
if (x->parent == x->parent->parent->left)
{
y=x->parent->parent->right;
if (y->red)
{
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
}
else
{
if (x == x->parent->right)
{
x=x->parent;
LeftRotate(x);
}
x->parent->red=0;
x->parent->parent->red=1;
RightRotate(x->parent->parent);
}
}
else /* case for x->parent == x->parent->parent->right */
{
/* this part is just like the section above with */
/* left and right interchanged */
y=x->parent->parent->left;
if (y->red)
{
x->parent->red=0;
y->red=0;
x->parent->parent->red=1;
x=x->parent->parent;
}
else
{
if (x == x->parent->left)
{
x=x->parent;
RightRotate(x);
}
x->parent->red=0;
x->parent->parent->red=1;
LeftRotate(x->parent->parent);
}
}
}
root->left->red=0;
numElements++;
return RedBlackTreeIterator(newNode, this);
#ifdef CHECK_RB_TREE_ASSUMPTIONS
CheckAssumptions();
#elif defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not red in RedBlackTree::Insert");
Assert(!root->red,"root not red in RedBlackTree::Insert");
#endif
}
RedBlackTree::~RedBlackTree()
{
RedBlackTreeNode * x = root->left;
nu::PtrList<RedBlackTreeNode> stuffToFree;
if (x != nil)
{
if (x->left != nil)
{
stuffToFree.push_back(x->left);
}
if (x->right != nil)
{
stuffToFree.push_back(x->right);
}
// delete x->storedEntry;
delete x;
while (!stuffToFree.empty())
{
x = stuffToFree.back();
stuffToFree.pop_back();
if (x->left != nil)
{
stuffToFree.push_back(x->left);
}
if (x->right != nil)
{
stuffToFree.push_back(x->right);
}
// delete x->storedEntry;
delete x;
}
}
delete nil;
delete root;
}
void RedBlackTree::DeleteFixUp(RedBlackTreeNode* x)
{
RedBlackTreeNode * w;
RedBlackTreeNode * rootLeft = root->left;
while ((!x->red) && (rootLeft != x))
{
if (x == x->parent->left)
{
w=x->parent->right;
if (w->red)
{
w->red=0;
x->parent->red=1;
LeftRotate(x->parent);
w=x->parent->right;
}
if ((!w->right->red) && (!w->left->red))
{
w->red=1;
x=x->parent;
}
else
{
if (!w->right->red)
{
w->left->red=0;
w->red=1;
RightRotate(w);
w=x->parent->right;
}
w->red=x->parent->red;
x->parent->red=0;
w->right->red=0;
LeftRotate(x->parent);
x=rootLeft; /* this is to exit while loop */
}
}
else /* the code below is has left and right switched from above */
{
w=x->parent->left;
if (w->red)
{
w->red=0;
x->parent->red=1;
RightRotate(x->parent);
w=x->parent->left;
}
if ((!w->right->red) && (!w->left->red))
{
w->red=1;
x=x->parent;
}
else
{
if (!w->left->red)
{
w->right->red=0;
w->red=1;
LeftRotate(w);
w=x->parent->left;
}
w->red=x->parent->red;
x->parent->red=0;
w->left->red=0;
RightRotate(x->parent);
x=rootLeft; /* this is to exit while loop */
}
}
}
x->red=0;
#ifdef CHECK_RB_TREE_ASSUMPTIONS
CheckAssumptions();
#elif defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not black in RedBlackTree::DeleteFixUp");
#endif
}
void RedBlackTree::Delete(RedBlackTree::key_t key)
{
RedBlackTreeIterator itr = Search(key);
DeleteNode(itr.node);
}
/***********************************************************************/
/* FUNCTION: DeleteNode */
/**/
/* INPUTS: tree is the tree to delete node z from */
/**/
/* OUTPUT: returns the RedBlackEntry stored at deleted node */
/**/
/* EFFECT: Deletes z from tree and but don't call destructor */
/**/
/* Modifies Input: z */
/**/
/* The algorithm from this function is from _Introduction_To_Algorithms_ */
/***********************************************************************/
RedBlackTree::val_t RedBlackTree::DeleteNode(RedBlackTreeNode * z)
{
RedBlackTreeNode* y;
RedBlackTreeNode* x;
val_t returnValue = z->storedEntry;
y= ((z->left == nil) || (z->right == nil)) ? z : GetSuccessorOf(z);
x= (y->left == nil) ? y->right : y->left;
if (root == (x->parent = y->parent)) /* assignment of y->p to x->p is intentional */
{
root->left=x;
}
else
{
if (y == y->parent->left)
{
y->parent->left=x;
}
else
{
y->parent->right=x;
}
}
if (y != z) /* y should not be nil in this case */
{
#ifdef DEBUG_ASSERT
Assert((y!=nil),"y is nil in DeleteNode \n");
#endif
/* y is the node to splice out and x is its child */
y->left=z->left;
y->right=z->right;
y->parent=z->parent;
z->left->parent=z->right->parent=y;
if (z == z->parent->left)
{
z->parent->left=y;
}
else
{
z->parent->right=y;
}
if (!(y->red))
{
y->red = z->red;
DeleteFixUp(x);
}
else
y->red = z->red;
delete z;
#ifdef CHECK_RB_TREE_ASSUMPTIONS
CheckAssumptions();
#elif defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not black in RedBlackTree::Delete");
#endif
}
else
{
if (!(y->red)) DeleteFixUp(x);
delete y;
#ifdef CHECK_RB_TREE_ASSUMPTIONS
CheckAssumptions();
#elif defined(DEBUG_ASSERT)
Assert(!nil->red,"nil not black in RedBlackTree::Delete");
#endif
}
numElements--;
return returnValue;
}
size_t RedBlackTree::size() const
{
return numElements;
}
/***********************************************************************/
/* FUNCTION: GetPredecessorOf */
/**/
/* INPUTS: x is the node to get predecessor of */
/**/
/* OUTPUT: This function returns the predecessor of x or NULL if no */
/* predecessor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
RedBlackTreeNode *RedBlackTree::GetPredecessorOf(RedBlackTreeNode * x) const
{
RedBlackTreeNode* y;
if (nil != (y = x->left)) /* assignment to y is intentional */
{
while (y->right != nil) /* returns the maximum of the left subtree of x */
{
y=y->right;
}
return(y);
}
else
{
y=x->parent;
while (x == y->left)
{
if (y == root) return(nil);
x=y;
y=y->parent;
}
return(y);
}
}
/***********************************************************************/
/* FUNCTION: GetSuccessorOf */
/**/
/* INPUTS: x is the node we want the succesor of */
/**/
/* OUTPUT: This function returns the successor of x or NULL if no */
/* successor exists. */
/**/
/* Modifies Input: none */
/**/
/* Note: uses the algorithm in _Introduction_To_Algorithms_ */
/***********************************************************************/
RedBlackTreeNode *RedBlackTree::GetSuccessorOf(RedBlackTreeNode * x) const
{
RedBlackTreeNode* y;
if (nil != (y = x->right)) /* assignment to y is intentional */
{
while (y->left != nil) /* returns the minium of the right subtree of x */
{
y=y->left;
}
return(y);
}
else
{
y=x->parent;
while (x == y->right) /* sentinel used instead of checking for nil */
{
x=y;
y=y->parent;
}
if (y == root) return(nil);
return(y);
}
}