winamp/Src/external_dependencies/openmpt-trunk/include/lame/mpglib/layer3.c

1970 lines
63 KiB
C
Raw Normal View History

2024-09-24 12:54:57 +00:00
/*
* layer3.c: Mpeg Layer-3 audio decoder
*
* Copyright (C) 1999-2010 The L.A.M.E. project
*
* Initially written by Michael Hipp, see also AUTHORS and README.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/* $Id: layer3.c,v 1.69 2017/08/20 20:06:57 robert Exp $ */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <stdlib.h>
#include "common.h"
#include "huffman.h"
#include "lame.h"
#include "machine.h"
#include "encoder.h"
#include "lame-analysis.h"
#include "decode_i386.h"
#include "layer3.h"
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif
static int gd_are_hip_tables_layer3_initialized = 0;
static real ispow[8207];
static real aa_ca[8], aa_cs[8];
static real COS1[12][6];
static real win[4][36];
static real win1[4][36];
static real gainpow2[256 + 118 + 4];
static real COS9[9];
static real COS6_1, COS6_2;
static real tfcos36[9];
static real tfcos12[3];
struct bandInfoStruct {
short longIdx[23];
short longDiff[22];
short shortIdx[14];
short shortDiff[13];
};
static int longLimit[9][23];
static int shortLimit[9][14];
/* *INDENT-OFF* */
static const struct bandInfoStruct bandInfo[9] = {
/* MPEG 1.0 */
{ {0,4,8,12,16,20,24,30,36,44,52,62,74, 90,110,134,162,196,238,288,342,418,576},
{4,4,4,4,4,4,6,6,8, 8,10,12,16,20,24,28,34,42,50,54, 76,158},
{0,4*3,8*3,12*3,16*3,22*3,30*3,40*3,52*3,66*3, 84*3,106*3,136*3,192*3},
{4,4,4,4,6,8,10,12,14,18,22,30,56} } ,
{ {0,4,8,12,16,20,24,30,36,42,50,60,72, 88,106,128,156,190,230,276,330,384,576},
{4,4,4,4,4,4,6,6,6, 8,10,12,16,18,22,28,34,40,46,54, 54,192},
{0,4*3,8*3,12*3,16*3,22*3,28*3,38*3,50*3,64*3, 80*3,100*3,126*3,192*3},
{4,4,4,4,6,6,10,12,14,16,20,26,66} } ,
{ {0,4,8,12,16,20,24,30,36,44,54,66,82,102,126,156,194,240,296,364,448,550,576} ,
{4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102, 26} ,
{0,4*3,8*3,12*3,16*3,22*3,30*3,42*3,58*3,78*3,104*3,138*3,180*3,192*3} ,
{4,4,4,4,6,8,12,16,20,26,34,42,12} } ,
/* MPEG 2.0 */
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 } ,
{0,4*3,8*3,12*3,18*3,24*3,32*3,42*3,56*3,74*3,100*3,132*3,174*3,192*3} ,
{4,4,4,6,6,8,10,14,18,26,32,42,18 } } ,
/* docs: 332. mpg123: 330 */
{ {0,6,12,18,24,30,36,44,54,66,80,96,114,136,162,194,232,278,332,394,464,540,576},
{6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36 } ,
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,136*3,180*3,192*3} ,
{4,4,4,6,8,10,12,14,18,24,32,44,12 } } ,
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576},
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54 },
{0,4*3,8*3,12*3,18*3,26*3,36*3,48*3,62*3,80*3,104*3,134*3,174*3,192*3},
{4,4,4,6,8,10,12,14,18,24,30,40,18 } } ,
/* MPEG 2.5 */
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
{0,12,24,36,54,78,108,144,186,240,312,402,522,576},
{4,4,4,6,8,10,12,14,18,24,30,40,18} },
{ {0,6,12,18,24,30,36,44,54,66,80,96,116,140,168,200,238,284,336,396,464,522,576} ,
{6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54},
{0,12,24,36,54,78,108,144,186,240,312,402,522,576},
{4,4,4,6,8,10,12,14,18,24,30,40,18} },
{ {0,12,24,36,48,60,72,88,108,132,160,192,232,280,336,400,476,566,568,570,572,574,576},
{12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2},
{0, 24, 48, 72,108,156,216,288,372,480,486,492,498,576},
{8,8,8,12,16,20,24,28,36,2,2,2,26} } ,
};
/* *INDENT-ON* */
static int mapbuf0[9][152];
static int mapbuf1[9][156];
static int mapbuf2[9][44];
static int *map[9][3];
static int *mapend[9][3];
static unsigned int n_slen2[512]; /* MPEG 2.0 slen for 'normal' mode */
static unsigned int i_slen2[256]; /* MPEG 2.0 slen for intensity stereo */
static real tan1_1[16], tan2_1[16], tan1_2[16], tan2_2[16];
static real pow1_1[2][16], pow2_1[2][16], pow1_2[2][16], pow2_2[2][16];
static unsigned int
get1bit(PMPSTR mp)
{
unsigned char rval;
rval = *mp->wordpointer << mp->bitindex;
mp->bitindex++;
mp->wordpointer += (mp->bitindex >> 3);
mp->bitindex &= 7;
return rval >> 7;
}
static real
get_gain(real const* gain_ptr, int idx, int* overflow)
{
static const real* const gainpow2_end_ptr = gainpow2 + (sizeof(gainpow2)/sizeof(gainpow2[0])) -1;
real const * ptr = &gain_ptr[idx];
if (&gain_ptr[idx] > gainpow2_end_ptr) {
ptr = gainpow2_end_ptr;
if (overflow) *overflow = 1;
}
return *ptr;
}
/*
* init tables for layer-3
*/
void
hip_init_tables_layer3(void)
{
int i, j, k;
if (gd_are_hip_tables_layer3_initialized) {
return;
}
gd_are_hip_tables_layer3_initialized = 1;
for (i = -256; i < 118 + 4; i++)
gainpow2[i + 256] = pow((double) 2.0, -0.25 * (double) (i + 210));
for (i = 0; i < 8207; i++)
ispow[i] = pow((double) i, (double) 4.0 / 3.0);
for (i = 0; i < 8; i++) {
static const double Ci[8] = { -0.6, -0.535, -0.33, -0.185, -0.095, -0.041, -0.0142, -0.0037 };
double sq = sqrt(1.0 + Ci[i] * Ci[i]);
aa_cs[i] = 1.0 / sq;
aa_ca[i] = Ci[i] / sq;
}
for (i = 0; i < 18; i++) {
win[0][i] = win[1][i] =
0.5 * sin(M_PI / 72.0 * (double) (2 * (i + 0) + 1)) / cos(M_PI *
(double) (2 * (i + 0) +
19) / 72.0);
win[0][i + 18] = win[3][i + 18] =
0.5 * sin(M_PI / 72.0 * (double) (2 * (i + 18) + 1)) / cos(M_PI *
(double) (2 * (i + 18) +
19) / 72.0);
}
for (i = 0; i < 6; i++) {
win[1][i + 18] = 0.5 / cos(M_PI * (double) (2 * (i + 18) + 19) / 72.0);
win[3][i + 12] = 0.5 / cos(M_PI * (double) (2 * (i + 12) + 19) / 72.0);
win[1][i + 24] =
0.5 * sin(M_PI / 24.0 * (double) (2 * i + 13)) / cos(M_PI *
(double) (2 * (i + 24) +
19) / 72.0);
win[1][i + 30] = win[3][i] = 0.0;
win[3][i + 6] =
0.5 * sin(M_PI / 24.0 * (double) (2 * i + 1)) / cos(M_PI * (double) (2 * (i + 6) + 19) /
72.0);
}
for (i = 0; i < 9; i++)
COS9[i] = cos(M_PI / 18.0 * (double) i);
for (i = 0; i < 9; i++)
tfcos36[i] = 0.5 / cos(M_PI * (double) (i * 2 + 1) / 36.0);
for (i = 0; i < 3; i++)
tfcos12[i] = 0.5 / cos(M_PI * (double) (i * 2 + 1) / 12.0);
COS6_1 = cos(M_PI / 6.0 * (double) 1);
COS6_2 = cos(M_PI / 6.0 * (double) 2);
for (i = 0; i < 12; i++) {
win[2][i] =
0.5 * sin(M_PI / 24.0 * (double) (2 * i + 1)) / cos(M_PI * (double) (2 * i + 7) / 24.0);
for (j = 0; j < 6; j++)
COS1[i][j] = cos(M_PI / 24.0 * (double) ((2 * i + 7) * (2 * j + 1)));
}
for (j = 0; j < 4; j++) {
static int const len[4] = { 36, 36, 12, 36 };
for (i = 0; i < len[j]; i += 2)
win1[j][i] = +win[j][i];
for (i = 1; i < len[j]; i += 2)
win1[j][i] = -win[j][i];
}
for (i = 0; i < 16; i++) {
double t = tan((double) i * M_PI / 12.0);
tan1_1[i] = t / (1.0 + t);
tan2_1[i] = 1.0 / (1.0 + t);
tan1_2[i] = M_SQRT2 * t / (1.0 + t);
tan2_2[i] = M_SQRT2 / (1.0 + t);
for (j = 0; j < 2; j++) {
double base = pow(2.0, -0.25 * (j + 1.0));
double p1 = 1.0, p2 = 1.0;
if (i > 0) {
if (i & 1)
p1 = pow(base, (i + 1.0) * 0.5);
else
p2 = pow(base, i * 0.5);
}
pow1_1[j][i] = p1;
pow2_1[j][i] = p2;
pow1_2[j][i] = M_SQRT2 * p1;
pow2_2[j][i] = M_SQRT2 * p2;
}
}
for (j = 0; j < 9; j++) {
struct bandInfoStruct const *bi = (struct bandInfoStruct const *) &bandInfo[j];
int *mp;
int cb, lwin;
short const *bdf;
int switch_idx = (j < 3) ? 8 : 6;
mp = map[j][0] = mapbuf0[j];
bdf = bi->longDiff;
for (i = 0, cb = 0; cb < switch_idx; cb++, i += *bdf++) {
*mp++ = (*bdf) >> 1;
*mp++ = i;
*mp++ = 3;
*mp++ = cb;
}
bdf = bi->shortDiff + 3;
for (cb = 3; cb < 13; cb++) {
int l = (*bdf++) >> 1;
for (lwin = 0; lwin < 3; lwin++) {
*mp++ = l;
*mp++ = i + lwin;
*mp++ = lwin;
*mp++ = cb;
}
i += 6 * l;
}
mapend[j][0] = mp;
mp = map[j][1] = mapbuf1[j];
bdf = bi->shortDiff + 0;
for (i = 0, cb = 0; cb < 13; cb++) {
int l = (*bdf++) >> 1;
for (lwin = 0; lwin < 3; lwin++) {
*mp++ = l;
*mp++ = i + lwin;
*mp++ = lwin;
*mp++ = cb;
}
i += 6 * l;
}
mapend[j][1] = mp;
mp = map[j][2] = mapbuf2[j];
bdf = bi->longDiff;
for (cb = 0; cb < 22; cb++) {
*mp++ = (*bdf++) >> 1;
*mp++ = cb;
}
mapend[j][2] = mp;
}
for (j = 0; j < 9; j++) {
for (i = 0; i < 23; i++) {
longLimit[j][i] = (bandInfo[j].longIdx[i] - 1 + 8) / 18 + 1;
if (longLimit[j][i] > SBLIMIT)
longLimit[j][i] = SBLIMIT;
}
for (i = 0; i < 14; i++) {
shortLimit[j][i] = (bandInfo[j].shortIdx[i] - 1) / 18 + 1;
if (shortLimit[j][i] > SBLIMIT)
shortLimit[j][i] = SBLIMIT;
}
}
for (i = 0; i < 5; i++) {
for (j = 0; j < 6; j++) {
for (k = 0; k < 6; k++) {
int n = k + j * 6 + i * 36;
i_slen2[n] = i | (j << 3) | (k << 6) | (3 << 12);
}
}
}
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
for (k = 0; k < 4; k++) {
int n = k + j * 4 + i * 16;
i_slen2[n + 180] = i | (j << 3) | (k << 6) | (4 << 12);
}
}
}
for (i = 0; i < 4; i++) {
for (j = 0; j < 3; j++) {
int n = j + i * 3;
i_slen2[n + 244] = i | (j << 3) | (5 << 12);
n_slen2[n + 500] = i | (j << 3) | (2 << 12) | (1 << 15);
}
}
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
for (k = 0; k < 4; k++) {
int l;
for (l = 0; l < 4; l++) {
int n = l + k * 4 + j * 16 + i * 80;
n_slen2[n] = i | (j << 3) | (k << 6) | (l << 9) | (0 << 12);
}
}
}
}
for (i = 0; i < 5; i++) {
for (j = 0; j < 5; j++) {
for (k = 0; k < 4; k++) {
int n = k + j * 4 + i * 20;
n_slen2[n + 400] = i | (j << 3) | (k << 6) | (1 << 12);
}
}
}
}
/*
* read additional side information
*/
static void
III_get_side_info_1(PMPSTR mp, int stereo,
int ms_stereo, long sfreq, int single)
{
int ch, gr;
int powdiff = (single == 3) ? 4 : 0;
mp->sideinfo.main_data_begin = getbits(mp, 9);
if (stereo == 1)
mp->sideinfo.private_bits = getbits_fast(mp, 5);
else
mp->sideinfo.private_bits = getbits_fast(mp, 3);
for (ch = 0; ch < stereo; ch++) {
mp->sideinfo.ch[ch].gr[0].scfsi = -1;
mp->sideinfo.ch[ch].gr[1].scfsi = getbits_fast(mp, 4);
}
for (gr = 0; gr < 2; gr++) {
for (ch = 0; ch < stereo; ch++) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
gr_infos->part2_3_length = getbits(mp, 12);
gr_infos->big_values = getbits_fast(mp, 9);
if (gr_infos->big_values > 288) {
lame_report_fnc(mp->report_err, "big_values too large! %i\n", gr_infos->big_values);
gr_infos->big_values = 288;
}
{
unsigned int qss = getbits_fast(mp, 8);
gr_infos->pow2gain = gainpow2 + 256 - qss + powdiff;
if (mp->pinfo != NULL) {
mp->pinfo->qss[gr][ch] = qss;
}
}
if (ms_stereo)
gr_infos->pow2gain += 2;
gr_infos->scalefac_compress = getbits_fast(mp, 4);
/* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
if (get1bit(mp)) {
int i;
gr_infos->block_type = getbits_fast(mp, 2);
gr_infos->mixed_block_flag = get1bit(mp);
gr_infos->table_select[0] = getbits_fast(mp, 5);
gr_infos->table_select[1] = getbits_fast(mp, 5);
/*
* table_select[2] not needed, because there is no region2,
* but to satisfy some verifications tools we set it either.
*/
gr_infos->table_select[2] = 0;
for (i = 0; i < 3; i++) {
unsigned int sbg = (getbits_fast(mp, 3) << 3);
gr_infos->full_gain[i] = gr_infos->pow2gain + sbg;
if (mp->pinfo != NULL)
mp->pinfo->sub_gain[gr][ch][i] = sbg / 8;
}
if (gr_infos->block_type == 0) {
lame_report_fnc(mp->report_err, "Blocktype == 0 and window-switching == 1 not allowed.\n");
/* error seems to be very good recoverable, so don't exit */
/* exit(1); */
}
/* region_count/start parameters are implicit in this case. */
gr_infos->region1start = 36 >> 1;
gr_infos->region2start = 576 >> 1;
}
else {
unsigned int i, r0c, r1c, region0index, region1index;
for (i = 0; i < 3; i++)
gr_infos->table_select[i] = getbits_fast(mp, 5);
r0c = getbits_fast(mp, 4);
r1c = getbits_fast(mp, 3);
region0index = r0c+1;
if (region0index > 22) {
lame_report_fnc(mp->report_err, "region0index=%d > 22\n", region0index);
region0index = 22;
}
region1index = r0c+1 + r1c+1;
if (region1index > 22) {
lame_report_fnc(mp->report_err, "region1index=%d > 22\n", region1index);
region1index = 22;
}
gr_infos->region1start = bandInfo[sfreq].longIdx[region0index] >> 1;
gr_infos->region2start = bandInfo[sfreq].longIdx[region1index] >> 1;
gr_infos->block_type = 0;
gr_infos->mixed_block_flag = 0;
}
gr_infos->preflag = get1bit(mp);
gr_infos->scalefac_scale = get1bit(mp);
gr_infos->count1table_select = get1bit(mp);
}
}
}
/*
* Side Info for MPEG 2.0 / LSF
*/
static void
III_get_side_info_2(PMPSTR mp, int stereo, int ms_stereo, long sfreq, int single)
{
int ch;
int powdiff = (single == 3) ? 4 : 0;
mp->sideinfo.main_data_begin = getbits(mp, 8);
if (stereo == 1)
mp->sideinfo.private_bits = get1bit(mp);
else
mp->sideinfo.private_bits = getbits_fast(mp, 2);
for (ch = 0; ch < stereo; ch++) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[0]);
unsigned int qss;
gr_infos->part2_3_length = getbits(mp, 12);
gr_infos->big_values = getbits_fast(mp, 9);
if (gr_infos->big_values > 288) {
lame_report_fnc(mp->report_err, "big_values too large! %i\n", gr_infos->big_values);
gr_infos->big_values = 288;
}
qss = getbits_fast(mp, 8);
gr_infos->pow2gain = gainpow2 + 256 - qss + powdiff;
if (mp->pinfo != NULL) {
mp->pinfo->qss[0][ch] = qss;
}
if (ms_stereo)
gr_infos->pow2gain += 2;
gr_infos->scalefac_compress = getbits(mp, 9);
/* window-switching flag == 1 for block_Type != 0 .. and block-type == 0 -> win-sw-flag = 0 */
if (get1bit(mp)) {
int i;
gr_infos->block_type = getbits_fast(mp, 2);
gr_infos->mixed_block_flag = get1bit(mp);
gr_infos->table_select[0] = getbits_fast(mp, 5);
gr_infos->table_select[1] = getbits_fast(mp, 5);
/*
* table_select[2] not needed, because there is no region2,
* but to satisfy some verifications tools we set it either.
*/
gr_infos->table_select[2] = 0;
for (i = 0; i < 3; i++) {
unsigned int sbg = (getbits_fast(mp, 3) << 3);
gr_infos->full_gain[i] = gr_infos->pow2gain + sbg;
if (mp->pinfo != NULL)
mp->pinfo->sub_gain[0][ch][i] = sbg / 8;
}
if (gr_infos->block_type == 0) {
lame_report_fnc(mp->report_err, "Blocktype == 0 and window-switching == 1 not allowed.\n");
/* error seems to be very good recoverable, so don't exit */
/* exit(1); */
}
/* region_count/start parameters are implicit in this case. */
if (gr_infos->block_type == 2) {
if (gr_infos->mixed_block_flag == 0)
gr_infos->region1start = 36 >> 1;
else
gr_infos->region1start = 48 >> 1;
}
else
gr_infos->region1start = 54 >> 1;
if (sfreq == 8)
gr_infos->region1start *= 2;
gr_infos->region2start = 576 >> 1;
}
else {
unsigned int i, r0c, r1c, region0index, region1index;
for (i = 0; i < 3; i++)
gr_infos->table_select[i] = getbits_fast(mp, 5);
r0c = getbits_fast(mp, 4);
r1c = getbits_fast(mp, 3);
region0index = r0c+1;
if (region0index > 22) {
lame_report_fnc(mp->report_err, "region0index=%d > 22\n", region0index);
region0index = 22;
}
region1index = r0c+1 + r1c+1;
if (region1index > 22) {
lame_report_fnc(mp->report_err, "region1index=%d > 22\n", region1index);
region1index = 22;
}
gr_infos->region1start = bandInfo[sfreq].longIdx[region0index] >> 1;
gr_infos->region2start = bandInfo[sfreq].longIdx[region1index] >> 1;
gr_infos->block_type = 0;
gr_infos->mixed_block_flag = 0;
}
gr_infos->scalefac_scale = get1bit(mp);
gr_infos->count1table_select = get1bit(mp);
}
}
/*
* read scalefactors
*/
static int
III_get_scale_factors_1(PMPSTR mp, int *scf, struct gr_info_s *gr_infos)
{
static const unsigned char slen[2][16] = {
{0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4},
{0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3}
};
int numbits;
int num0 = slen[0][gr_infos->scalefac_compress];
int num1 = slen[1][gr_infos->scalefac_compress];
if (gr_infos->block_type == 2) {
int i = 18;
numbits = (num0 + num1) * 18;
if (gr_infos->mixed_block_flag) {
for (i = 8; i; i--)
*scf++ = getbits_fast(mp, num0);
i = 9;
numbits -= num0; /* num0 * 17 + num1 * 18 */
}
for (; i; i--)
*scf++ = getbits_fast(mp, num0);
for (i = 18; i; i--)
*scf++ = getbits_fast(mp, num1);
*scf++ = 0;
*scf++ = 0;
*scf++ = 0; /* short[13][0..2] = 0 */
}
else {
int i;
int scfsi = gr_infos->scfsi;
if (scfsi < 0) { /* scfsi < 0 => granule == 0 */
for (i = 11; i; i--)
*scf++ = getbits_fast(mp, num0);
for (i = 10; i; i--)
*scf++ = getbits_fast(mp, num1);
numbits = (num0 + num1) * 10 + num0;
}
else {
numbits = 0;
if (!(scfsi & 0x8)) {
for (i = 6; i; i--)
*scf++ = getbits_fast(mp, num0);
numbits += num0 * 6;
}
else {
scf += 6;
}
if (!(scfsi & 0x4)) {
for (i = 5; i; i--)
*scf++ = getbits_fast(mp, num0);
numbits += num0 * 5;
}
else {
scf += 5;
}
if (!(scfsi & 0x2)) {
for (i = 5; i; i--)
*scf++ = getbits_fast(mp, num1);
numbits += num1 * 5;
}
else {
scf += 5;
}
if (!(scfsi & 0x1)) {
for (i = 5; i; i--)
*scf++ = getbits_fast(mp, num1);
numbits += num1 * 5;
}
else {
scf += 5;
}
}
*scf++ = 0; /* no l[21] in original sources */
}
return numbits;
}
static int
III_get_scale_factors_2(PMPSTR mp, int *scf, struct gr_info_s *gr_infos, int i_stereo)
{
unsigned char const *pnt;
int i, j;
unsigned int slen;
int n = 0;
int numbits = 0;
/* *INDENT-OFF* */
static const unsigned char stab[3][6][4] = {
{ { 6, 5, 5,5 } , { 6, 5, 7,3 } , { 11,10,0,0} ,
{ 7, 7, 7,0 } , { 6, 6, 6,3 } , { 8, 8,5,0} } ,
{ { 9, 9, 9,9 } , { 9, 9,12,6 } , { 18,18,0,0} ,
{12,12,12,0 } , {12, 9, 9,6 } , { 15,12,9,0} } ,
{ { 6, 9, 9,9 } , { 6, 9,12,6 } , { 15,18,0,0} ,
{ 6,15,12,0 } , { 6,12, 9,6 } , { 6,18,9,0} } };
/* *INDENT-ON* */
if (i_stereo) /* i_stereo AND second channel -> do_layer3() checks this */
slen = i_slen2[gr_infos->scalefac_compress >> 1];
else
slen = n_slen2[gr_infos->scalefac_compress];
gr_infos->preflag = (slen >> 15) & 0x1;
n = 0;
if (gr_infos->block_type == 2) {
n++;
if (gr_infos->mixed_block_flag)
n++;
}
pnt = (unsigned char const *) stab[n][(slen >> 12) & 0x7];
for (i = 0; i < 4; i++) {
int num = slen & 0x7;
slen >>= 3;
if (num) {
for (j = 0; j < (int) (pnt[i]); j++)
*scf++ = getbits_fast(mp, num);
numbits += pnt[i] * num;
}
else {
for (j = 0; j < (int) (pnt[i]); j++)
*scf++ = 0;
}
}
n = (n << 1) + 1;
for (i = 0; i < n; i++)
*scf++ = 0;
return numbits;
}
/* *INDENT-OFF* */
static const int pretab1 [22] = {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,2,2,3,3,3,2,0}; /* char enough ? */
static const int pretab2 [22] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
/* *INDENT-ON* */
/*
* don't forget to apply the same changes to III_dequantize_sample_ms() !!!
*/
static int
III_dequantize_sample(PMPSTR mp, real xr[SBLIMIT][SSLIMIT], int *scf,
struct gr_info_s *gr_infos, int sfreq, int part2bits)
{
int shift = 1 + gr_infos->scalefac_scale;
real *xrpnt = (real *) xr, xr_value=0;
int l[3], l3;
int part2remain = gr_infos->part2_3_length - part2bits;
int *me;
real const * const xr_endptr = &xr[SBLIMIT-1][SSLIMIT-1];
int isbug = 0;
int bobug = 0;
int bobug_sb = 0, bobug_l3=0;
#define BUFFER_OVERFLOW_BUG() if(!bobug){bobug=1;bobug_sb=cb;bobug_l3=l3;}else
/* lame_report_fnc(mp->report_dbg,"part2remain = %d, gr_infos->part2_3_length = %d, part2bits = %d\n",
part2remain, gr_infos->part2_3_length, part2bits); */
{
int i;
for (i = (&xr[SBLIMIT][0] - xrpnt) >> 1; i > 0; i--) {
*xrpnt++ = 0.0;
*xrpnt++ = 0.0;
}
xrpnt = (real *) xr;
}
{
int bv = gr_infos->big_values;
int region1 = gr_infos->region1start;
int region2 = gr_infos->region2start;
l3 = ((576 >> 1) - bv) >> 1;
/*
* we may lose the 'odd' bit here !!
* check this later again
*/
if (bv <= region1) {
l[0] = bv;
l[1] = 0;
l[2] = 0;
}
else {
l[0] = region1;
if (bv <= region2) {
l[1] = bv - l[0];
l[2] = 0;
}
else {
l[1] = region2 - l[0];
l[2] = bv - region2;
}
}
}
/* MDH crash fix */
{
int i;
for (i = 0; i < 3; i++) {
if (l[i] < 0) {
lame_report_fnc(mp->report_err, "hip: Bogus region length (%d)\n", l[i]);
l[i] = 0;
}
}
}
/* end MDH crash fix */
if (gr_infos->block_type == 2) {
/*
* decoding with short or mixed mode BandIndex table
*/
int i, max[4];
int step = 0, lwin = 0, cb = 0;
real v = 0.0;
int *m, mc;
if (gr_infos->mixed_block_flag) {
max[3] = -1;
max[0] = max[1] = max[2] = 2;
m = map[sfreq][0];
me = mapend[sfreq][0];
}
else {
max[0] = max[1] = max[2] = max[3] = -1;
/* max[3] not really needed in this case */
m = map[sfreq][1];
me = mapend[sfreq][1];
}
mc = 0;
for (i = 0; i < 2; i++) {
int lp = l[i];
struct newhuff const *h = (struct newhuff const *) (ht + gr_infos->table_select[i]);
for (; lp; lp--, mc--) {
int x, y;
if ((!mc)) {
mc = *m++;
xrpnt = ((real *) xr) + (*m++);
lwin = *m++;
cb = *m++;
if (lwin == 3) {
v = get_gain(gr_infos->pow2gain, (*scf++) << shift, &isbug);
step = 1;
}
else {
v = get_gain(gr_infos->full_gain[lwin], (*scf++) << shift, &isbug);
step = 3;
}
}
{
short const *val = (short const *) h->table;
while ((y = *val++) < 0) {
if (get1bit(mp))
val -= y;
part2remain--;
}
x = y >> 4;
y &= 0xf;
}
if (x == 15) {
max[lwin] = cb;
part2remain -= h->linbits + 1;
x += getbits(mp, (int) h->linbits);
if (get1bit(mp))
xr_value = -ispow[x] * v;
else
xr_value = ispow[x] * v;
}
else if (x) {
max[lwin] = cb;
if (get1bit(mp))
xr_value = -ispow[x] * v;
else
xr_value = ispow[x] * v;
part2remain--;
}
else
xr_value = 0.0;
if (xrpnt <= xr_endptr)
*xrpnt = xr_value;
else
BUFFER_OVERFLOW_BUG();
xrpnt += step;
if (y == 15) {
max[lwin] = cb;
part2remain -= h->linbits + 1;
y += getbits(mp, (int) h->linbits);
if (get1bit(mp))
xr_value = -ispow[y] * v;
else
xr_value = ispow[y] * v;
}
else if (y) {
max[lwin] = cb;
if (get1bit(mp))
xr_value = -ispow[y] * v;
else
xr_value = ispow[y] * v;
part2remain--;
}
else
xr_value = 0.0;
if (xrpnt <= xr_endptr)
*xrpnt = xr_value;
else
BUFFER_OVERFLOW_BUG();
xrpnt += step;
}
}
for (; (l3 > 0) && (part2remain > 0); l3--) {
struct newhuff const *h = (struct newhuff const *) (htc + gr_infos->count1table_select);
short const *val = (short const *) h->table;
short a;
while ((a = *val++) < 0) {
part2remain--;
if (part2remain < 0) {
part2remain++;
a = 0;
break;
}
if (get1bit(mp))
val -= a;
}
for (i = 0; i < 4; i++) {
if (!(i & 1)) {
if (!mc) {
mc = *m++;
xrpnt = ((real *) xr) + (*m++);
lwin = *m++;
cb = *m++;
if (lwin == 3) {
v = get_gain(gr_infos->pow2gain, (*scf++) << shift, &isbug);
step = 1;
}
else {
v = get_gain(gr_infos->full_gain[lwin], (*scf++) << shift, &isbug);
step = 3;
}
}
mc--;
}
if ((a & (0x8 >> i))) {
max[lwin] = cb;
part2remain--;
if (part2remain < 0) {
part2remain++;
break;
}
if (get1bit(mp))
xr_value = -v;
else
xr_value = v;
}
else
xr_value = 0.0;
if (xrpnt <= xr_endptr)
*xrpnt = xr_value;
else
BUFFER_OVERFLOW_BUG();
xrpnt += step;
}
}
while (m < me) {
if (!mc) {
mc = *m++;
xrpnt = ((real *) xr) + *m++;
if ((*m++) == 3)
step = 1;
else
step = 3;
m++; /* cb */
}
mc--;
if (xrpnt <= xr_endptr)
*xrpnt = 0.0;
else
BUFFER_OVERFLOW_BUG();
xrpnt += step;
if (xrpnt <= xr_endptr)
*xrpnt = 0.0;
else
BUFFER_OVERFLOW_BUG();
xrpnt += step;
/* we could add a little opt. here:
* if we finished a band for window 3 or a long band
* further bands could copied in a simple loop without a
* special 'map' decoding
*/
}
gr_infos->maxband[0] = max[0] + 1;
gr_infos->maxband[1] = max[1] + 1;
gr_infos->maxband[2] = max[2] + 1;
gr_infos->maxbandl = max[3] + 1;
{
int rmax = max[0] > max[1] ? max[0] : max[1];
rmax = (rmax > max[2] ? rmax : max[2]) + 1;
gr_infos->maxb = rmax ? shortLimit[sfreq][rmax] : longLimit[sfreq][max[3] + 1];
}
}
else {
/*
* decoding with 'long' BandIndex table (block_type != 2)
*/
int const *pretab = (int const *) (gr_infos->preflag ? pretab1 : pretab2);
int i, max = -1;
int cb = 0;
int *m = map[sfreq][2];
real v = 0.0;
int mc = 0;
/*
* long hash table values
*/
for (i = 0; i < 3; i++) {
int lp = l[i];
struct newhuff const *h = (struct newhuff const *) (ht + gr_infos->table_select[i]);
for (; lp; lp--, mc--) {
int x, y;
if (!mc) {
mc = *m++;
v = get_gain(gr_infos->pow2gain, ((*scf++) + (*pretab++)) << shift, &isbug);
cb = *m++;
}
{
short const *val = (short const *) h->table;
while ((y = *val++) < 0) {
if (get1bit(mp))
val -= y;
part2remain--;
}
x = y >> 4;
y &= 0xf;
}
if (x == 15) {
max = cb;
part2remain -= h->linbits + 1;
x += getbits(mp, (int) h->linbits);
if (get1bit(mp))
xr_value = -ispow[x] * v;
else
xr_value = ispow[x] * v;
}
else if (x) {
max = cb;
if (get1bit(mp))
xr_value = -ispow[x] * v;
else
xr_value = ispow[x] * v;
part2remain--;
}
else
xr_value = 0.0;
if (xrpnt <= xr_endptr)
*xrpnt++ = xr_value;
else
BUFFER_OVERFLOW_BUG();
if (y == 15) {
max = cb;
part2remain -= h->linbits + 1;
y += getbits(mp, (int) h->linbits);
if (get1bit(mp))
xr_value = -ispow[y] * v;
else
xr_value = ispow[y] * v;
}
else if (y) {
max = cb;
if (get1bit(mp))
xr_value = -ispow[y] * v;
else
xr_value = ispow[y] * v;
part2remain--;
}
else
xr_value = 0.0;
if (xrpnt <= xr_endptr)
*xrpnt++ = xr_value;
else
BUFFER_OVERFLOW_BUG();
}
}
/*
* short (count1table) values
*/
for (; l3 && (part2remain > 0); l3--) {
struct newhuff const *h = (struct newhuff const *) (htc + gr_infos->count1table_select);
short const *val = (short const *) h->table;
short a;
while ((a = *val++) < 0) {
part2remain--;
if (part2remain < 0) {
part2remain++;
a = 0;
break;
}
if (get1bit(mp))
val -= a;
}
for (i = 0; i < 4; i++) {
if (!(i & 1)) {
if (!mc) {
mc = *m++;
cb = *m++;
v = get_gain(gr_infos->pow2gain, ((*scf++) + (*pretab++)) << shift, &isbug);
}
mc--;
}
if ((a & (0x8 >> i))) {
max = cb;
part2remain--;
if (part2remain < 0) {
part2remain++;
break;
}
if (get1bit(mp))
xr_value = -v;
else
xr_value = v;
}
else
xr_value = 0.0;
if (xrpnt <= xr_endptr)
*xrpnt++ = xr_value;
else
BUFFER_OVERFLOW_BUG();
}
}
/*
* zero part
*/
while (xrpnt <= xr_endptr)
*xrpnt++ = 0.0;
gr_infos->maxbandl = max + 1;
gr_infos->maxb = longLimit[sfreq][gr_infos->maxbandl];
}
#undef BUFFER_OVERFLOW_BUG
if (bobug) {
/* well, there was a bug report, where this happened!
The problem was, that mixed blocks summed up to over 576,
because of a wrong long/short switching index.
It's likely, that the buffer overflow is fixed now, after correcting mixed block map.
*/
lame_report_fnc
(mp->report_err
,"hip: OOPS, part2remain=%d l3=%d cb=%d bv=%d region1=%d region2=%d b-type=%d mixed=%d\n"
,part2remain
,bobug_l3
,bobug_sb
,gr_infos->big_values
,gr_infos->region1start
,gr_infos->region2start
,gr_infos->block_type
,gr_infos->mixed_block_flag
);
}
if (isbug) {
/* there is a bug report, where there is trouble with IS coded short block gain.
Is intensity stereo coding implementation correct? Likely not.
*/
int i_stereo = 0;
if (mp->fr.mode == MPG_MD_JOINT_STEREO) {
i_stereo = mp->fr.mode_ext & 0x1;
}
lame_report_fnc
(mp->report_err
,"hip: OOPS, 'gainpow2' buffer overflow lsf=%d i-stereo=%d b-type=%d mixed=%d\n"
,mp->fr.lsf
,i_stereo
,gr_infos->block_type
,gr_infos->mixed_block_flag
);
}
while (part2remain > 16) {
getbits(mp, 16); /* Dismiss stuffing Bits */
part2remain -= 16;
}
if (part2remain > 0)
getbits(mp, part2remain);
else if (part2remain < 0) {
lame_report_fnc(mp->report_err, "hip: Can't rewind stream by %d bits!\n", -part2remain);
return 1; /* -> error */
}
return 0;
}
/* intensity position, transmitted via a scalefactor value, allowed range is 0 - 15 */
static
int scalefac_to_is_pos(int sf)
{
if (0 <= sf && sf <= 15)
return sf;
return (sf < 0 ? 0 : 15);
}
/*
* III_stereo: calculate real channel values for Joint-I-Stereo-mode
*/
static void
III_i_stereo(real xr_buf[2][SBLIMIT][SSLIMIT], int *scalefac,
struct gr_info_s *gr_infos, int sfreq, int ms_stereo, int lsf)
{
real(*xr)[SBLIMIT * SSLIMIT] = (real(*)[SBLIMIT * SSLIMIT]) xr_buf;
struct bandInfoStruct const *bi = (struct bandInfoStruct const *) &bandInfo[sfreq];
real *tabl1, *tabl2;
if (lsf) {
int p = gr_infos->scalefac_compress & 0x1;
if (ms_stereo) {
tabl1 = pow1_2[p];
tabl2 = pow2_2[p];
}
else {
tabl1 = pow1_1[p];
tabl2 = pow2_1[p];
}
}
else {
if (ms_stereo) {
tabl1 = tan1_2;
tabl2 = tan2_2;
}
else {
tabl1 = tan1_1;
tabl2 = tan2_1;
}
}
if (gr_infos->block_type == 2) {
int lwin, do_l = 0;
if (gr_infos->mixed_block_flag)
do_l = 1;
for (lwin = 0; lwin < 3; lwin++) { /* process each window */
/* get first band with zero values */
int is_p, sb, idx, sfb = gr_infos->maxband[lwin]; /* sfb is minimal 3 for mixed mode */
if (sfb > 3)
do_l = 0;
for (; sfb < 12; sfb++) {
is_p = scalefac[sfb * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */
is_p = scalefac_to_is_pos(is_p);
if (is_p != 7) {
real t1, t2;
sb = bi->shortDiff[sfb];
idx = bi->shortIdx[sfb] + lwin;
t1 = tabl1[is_p];
t2 = tabl2[is_p];
for (; sb > 0; sb--, idx += 3) {
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
}
#if 1
/* in the original: copy 10 to 11 , here: copy 11 to 12
maybe still wrong??? (copy 12 to 13?) */
is_p = scalefac[11 * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */
sb = bi->shortDiff[12];
idx = bi->shortIdx[12] + lwin;
#else
is_p = scalefac[10 * 3 + lwin - gr_infos->mixed_block_flag]; /* scale: 0-15 */
sb = bi->shortDiff[11];
idx = bi->shortIdx[11] + lwin;
#endif
is_p = scalefac_to_is_pos(is_p);
if (is_p != 7) {
real t1, t2;
t1 = tabl1[is_p];
t2 = tabl2[is_p];
for (; sb > 0; sb--, idx += 3) {
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
} /* end for(lwin; .. ; . ) */
if (do_l) {
/* also check l-part, if ALL bands in the three windows are 'empty'
* and mode = mixed_mode
*/
int sfb = gr_infos->maxbandl;
int idx = bi->longIdx[sfb];
for (; sfb < 8; sfb++) {
int sb = bi->longDiff[sfb];
int is_p = scalefac[sfb]; /* scale: 0-15 */
is_p = scalefac_to_is_pos(is_p);
if (is_p != 7) {
real t1, t2;
t1 = tabl1[is_p];
t2 = tabl2[is_p];
for (; sb > 0; sb--, idx++) {
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
else
idx += sb;
}
}
}
else { /* ((gr_infos->block_type != 2)) */
int sfb = gr_infos->maxbandl;
int is_p, idx = bi->longIdx[sfb];
for (; sfb < 21; sfb++) {
int sb = bi->longDiff[sfb];
is_p = scalefac[sfb]; /* scale: 0-15 */
is_p = scalefac_to_is_pos(is_p);
if (is_p != 7) {
real t1, t2;
t1 = tabl1[is_p];
t2 = tabl2[is_p];
for (; sb > 0; sb--, idx++) {
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
else
idx += sb;
}
is_p = scalefac[20]; /* copy l-band 20 to l-band 21 */
is_p = scalefac_to_is_pos(is_p);
idx = bi->longIdx[21];
if (is_p != 7) {
int sb;
real t1 = tabl1[is_p], t2 = tabl2[is_p];
for (sb = bi->longDiff[21]; sb > 0; sb--, idx++) {
real v = xr[0][idx];
xr[0][idx] = v * t1;
xr[1][idx] = v * t2;
}
}
} /* ... */
}
static void
III_antialias(real xr[SBLIMIT][SSLIMIT], struct gr_info_s *gr_infos)
{
int sblim;
if (gr_infos->block_type == 2) {
if (!gr_infos->mixed_block_flag)
return;
sblim = 1;
}
else {
sblim = gr_infos->maxb - 1;
}
/* 31 alias-reduction operations between each pair of sub-bands */
/* with 8 butterflies between each pair */
{
int sb;
real *xr1 = (real *) xr[1];
for (sb = sblim; sb; sb--, xr1 += 10) {
int ss;
real *cs = aa_cs, *ca = aa_ca;
real *xr2 = xr1;
for (ss = 7; ss >= 0; ss--) { /* upper and lower butterfly inputs */
real bu = *--xr2, bd = *xr1;
*xr2 = (bu * (*cs)) - (bd * (*ca));
*xr1++ = (bd * (*cs++)) + (bu * (*ca++));
}
}
}
}
/* *INDENT-OFF* */
/*
DCT insipired by Jeff Tsay's DCT from the maplay package
this is an optimized version with manual unroll.
References:
[1] S. Winograd: "On Computing the Discrete Fourier Transform",
Mathematics of Computation, Volume 32, Number 141, January 1978,
Pages 175-199
*/
static void dct36(real *inbuf,real *o1,real *o2,real *wintab,real *tsbuf)
{
{
real *in = inbuf;
in[17]+=in[16]; in[16]+=in[15]; in[15]+=in[14];
in[14]+=in[13]; in[13]+=in[12]; in[12]+=in[11];
in[11]+=in[10]; in[10]+=in[9]; in[9] +=in[8];
in[8] +=in[7]; in[7] +=in[6]; in[6] +=in[5];
in[5] +=in[4]; in[4] +=in[3]; in[3] +=in[2];
in[2] +=in[1]; in[1] +=in[0];
in[17]+=in[15]; in[15]+=in[13]; in[13]+=in[11]; in[11]+=in[9];
in[9] +=in[7]; in[7] +=in[5]; in[5] +=in[3]; in[3] +=in[1];
{
#define MACRO0(v) { \
real tmp; \
out2[9+(v)] = (tmp = sum0 + sum1) * w[27+(v)]; \
out2[8-(v)] = tmp * w[26-(v)]; } \
sum0 -= sum1; \
ts[SBLIMIT*(8-(v))] = out1[8-(v)] + sum0 * w[8-(v)]; \
ts[SBLIMIT*(9+(v))] = out1[9+(v)] + sum0 * w[9+(v)];
#define MACRO1(v) { \
real sum0,sum1; \
sum0 = tmp1a + tmp2a; \
sum1 = (tmp1b + tmp2b) * tfcos36[(v)]; \
MACRO0(v); }
#define MACRO2(v) { \
real sum0,sum1; \
sum0 = tmp2a - tmp1a; \
sum1 = (tmp2b - tmp1b) * tfcos36[(v)]; \
MACRO0(v); }
const real *c = COS9;
real *out2 = o2;
real *w = wintab;
real *out1 = o1;
real *ts = tsbuf;
real ta33,ta66,tb33,tb66;
ta33 = in[2*3+0] * c[3];
ta66 = in[2*6+0] * c[6];
tb33 = in[2*3+1] * c[3];
tb66 = in[2*6+1] * c[6];
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = in[2*1+0] * c[1] + ta33 + in[2*5+0] * c[5] + in[2*7+0] * c[7];
tmp1b = in[2*1+1] * c[1] + tb33 + in[2*5+1] * c[5] + in[2*7+1] * c[7];
tmp2a = in[2*0+0] + in[2*2+0] * c[2] + in[2*4+0] * c[4] + ta66 + in[2*8+0] * c[8];
tmp2b = in[2*0+1] + in[2*2+1] * c[2] + in[2*4+1] * c[4] + tb66 + in[2*8+1] * c[8];
MACRO1(0);
MACRO2(8);
}
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = ( in[2*1+0] - in[2*5+0] - in[2*7+0] ) * c[3];
tmp1b = ( in[2*1+1] - in[2*5+1] - in[2*7+1] ) * c[3];
tmp2a = ( in[2*2+0] - in[2*4+0] - in[2*8+0] ) * c[6] - in[2*6+0] + in[2*0+0];
tmp2b = ( in[2*2+1] - in[2*4+1] - in[2*8+1] ) * c[6] - in[2*6+1] + in[2*0+1];
MACRO1(1);
MACRO2(7);
}
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = in[2*1+0] * c[5] - ta33 - in[2*5+0] * c[7] + in[2*7+0] * c[1];
tmp1b = in[2*1+1] * c[5] - tb33 - in[2*5+1] * c[7] + in[2*7+1] * c[1];
tmp2a = in[2*0+0] - in[2*2+0] * c[8] - in[2*4+0] * c[2] + ta66 + in[2*8+0] * c[4];
tmp2b = in[2*0+1] - in[2*2+1] * c[8] - in[2*4+1] * c[2] + tb66 + in[2*8+1] * c[4];
MACRO1(2);
MACRO2(6);
}
{
real tmp1a,tmp2a,tmp1b,tmp2b;
tmp1a = in[2*1+0] * c[7] - ta33 + in[2*5+0] * c[1] - in[2*7+0] * c[5];
tmp1b = in[2*1+1] * c[7] - tb33 + in[2*5+1] * c[1] - in[2*7+1] * c[5];
tmp2a = in[2*0+0] - in[2*2+0] * c[4] + in[2*4+0] * c[8] + ta66 - in[2*8+0] * c[2];
tmp2b = in[2*0+1] - in[2*2+1] * c[4] + in[2*4+1] * c[8] + tb66 - in[2*8+1] * c[2];
MACRO1(3);
MACRO2(5);
}
{
real sum0,sum1;
sum0 = in[2*0+0] - in[2*2+0] + in[2*4+0] - in[2*6+0] + in[2*8+0];
sum1 = (in[2*0+1] - in[2*2+1] + in[2*4+1] - in[2*6+1] + in[2*8+1] ) * tfcos36[4];
MACRO0(4);
}
}
}
}
/*
* new DCT12
*/
static void dct12(real *in,real *rawout1,real *rawout2,real *wi,real *ts)
{
#define DCT12_PART1 \
in5 = in[5*3]; \
in5 += (in4 = in[4*3]); \
in4 += (in3 = in[3*3]); \
in3 += (in2 = in[2*3]); \
in2 += (in1 = in[1*3]); \
in1 += (in0 = in[0*3]); \
\
in5 += in3; in3 += in1; \
\
in2 *= COS6_1; \
in3 *= COS6_1; \
#define DCT12_PART2 \
in0 += in4 * COS6_2; \
\
in4 = in0 + in2; \
in0 -= in2; \
\
in1 += in5 * COS6_2; \
\
in5 = (in1 + in3) * tfcos12[0]; \
in1 = (in1 - in3) * tfcos12[2]; \
\
in3 = in4 + in5; \
in4 -= in5; \
\
in2 = in0 + in1; \
in0 -= in1;
{
real in0,in1,in2,in3,in4,in5;
real *out1 = rawout1;
ts[SBLIMIT*0] = out1[0]; ts[SBLIMIT*1] = out1[1]; ts[SBLIMIT*2] = out1[2];
ts[SBLIMIT*3] = out1[3]; ts[SBLIMIT*4] = out1[4]; ts[SBLIMIT*5] = out1[5];
DCT12_PART1
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = (in1 - in5) * tfcos12[1];
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
ts[(17-1)*SBLIMIT] = out1[17-1] + tmp0 * wi[11-1];
ts[(12+1)*SBLIMIT] = out1[12+1] + tmp0 * wi[6+1];
ts[(6 +1)*SBLIMIT] = out1[6 +1] + tmp1 * wi[1];
ts[(11-1)*SBLIMIT] = out1[11-1] + tmp1 * wi[5-1];
}
DCT12_PART2
ts[(17-0)*SBLIMIT] = out1[17-0] + in2 * wi[11-0];
ts[(12+0)*SBLIMIT] = out1[12+0] + in2 * wi[6+0];
ts[(12+2)*SBLIMIT] = out1[12+2] + in3 * wi[6+2];
ts[(17-2)*SBLIMIT] = out1[17-2] + in3 * wi[11-2];
ts[(6+0)*SBLIMIT] = out1[6+0] + in0 * wi[0];
ts[(11-0)*SBLIMIT] = out1[11-0] + in0 * wi[5-0];
ts[(6+2)*SBLIMIT] = out1[6+2] + in4 * wi[2];
ts[(11-2)*SBLIMIT] = out1[11-2] + in4 * wi[5-2];
}
in++;
{
real in0,in1,in2,in3,in4,in5;
real *out2 = rawout2;
DCT12_PART1
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = (in1 - in5) * tfcos12[1];
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
out2[5-1] = tmp0 * wi[11-1];
out2[0+1] = tmp0 * wi[6+1];
ts[(12+1)*SBLIMIT] += tmp1 * wi[1];
ts[(17-1)*SBLIMIT] += tmp1 * wi[5-1];
}
DCT12_PART2
out2[5-0] = in2 * wi[11-0];
out2[0+0] = in2 * wi[6+0];
out2[0+2] = in3 * wi[6+2];
out2[5-2] = in3 * wi[11-2];
ts[(12+0)*SBLIMIT] += in0 * wi[0];
ts[(17-0)*SBLIMIT] += in0 * wi[5-0];
ts[(12+2)*SBLIMIT] += in4 * wi[2];
ts[(17-2)*SBLIMIT] += in4 * wi[5-2];
}
in++;
{
real in0,in1,in2,in3,in4,in5;
real *out2 = rawout2;
out2[12]=out2[13]=out2[14]=out2[15]=out2[16]=out2[17]=0.0;
DCT12_PART1
{
real tmp0,tmp1 = (in0 - in4);
{
real tmp2 = (in1 - in5) * tfcos12[1];
tmp0 = tmp1 + tmp2;
tmp1 -= tmp2;
}
out2[11-1] = tmp0 * wi[11-1];
out2[6 +1] = tmp0 * wi[6+1];
out2[0+1] += tmp1 * wi[1];
out2[5-1] += tmp1 * wi[5-1];
}
DCT12_PART2
out2[11-0] = in2 * wi[11-0];
out2[6 +0] = in2 * wi[6+0];
out2[6 +2] = in3 * wi[6+2];
out2[11-2] = in3 * wi[11-2];
out2[0+0] += in0 * wi[0];
out2[5-0] += in0 * wi[5-0];
out2[0+2] += in4 * wi[2];
out2[5-2] += in4 * wi[5-2];
}
}
/* *INDENT-ON* */
/*
* III_hybrid
*/
static void
III_hybrid(PMPSTR mp, real fsIn[SBLIMIT][SSLIMIT], real tsOut[SSLIMIT][SBLIMIT],
int ch, struct gr_info_s *gr_infos)
{
real *tspnt = (real *) tsOut;
real(*block)[2][SBLIMIT * SSLIMIT] = mp->hybrid_block;
int *blc = mp->hybrid_blc;
real *rawout1, *rawout2;
int bt;
int sb = 0;
{
int b = blc[ch];
rawout1 = block[b][ch];
b = -b + 1;
rawout2 = block[b][ch];
blc[ch] = b;
}
if (gr_infos->mixed_block_flag) {
sb = 2;
dct36(fsIn[0], rawout1, rawout2, win[0], tspnt);
dct36(fsIn[1], rawout1 + 18, rawout2 + 18, win1[0], tspnt + 1);
rawout1 += 36;
rawout2 += 36;
tspnt += 2;
}
bt = gr_infos->block_type;
if (bt == 2) {
for (; sb < (int) gr_infos->maxb; sb += 2, tspnt += 2, rawout1 += 36, rawout2 += 36) {
dct12(fsIn[sb], rawout1, rawout2, win[2], tspnt);
dct12(fsIn[sb + 1], rawout1 + 18, rawout2 + 18, win1[2], tspnt + 1);
}
}
else {
for (; sb < (int) gr_infos->maxb; sb += 2, tspnt += 2, rawout1 += 36, rawout2 += 36) {
dct36(fsIn[sb], rawout1, rawout2, win[bt], tspnt);
dct36(fsIn[sb + 1], rawout1 + 18, rawout2 + 18, win1[bt], tspnt + 1);
}
}
for (; sb < SBLIMIT; sb++, tspnt++) {
int i;
for (i = 0; i < SSLIMIT; i++) {
tspnt[i * SBLIMIT] = *rawout1++;
*rawout2++ = 0.0;
}
}
}
/*
* main layer3 handler
*/
int
layer3_audiodata_precedesframes(PMPSTR mp)
{
int audioDataInFrame;
int framesToBacktrack;
/* specific to Layer 3, since Layer 1 & 2 the audio data starts at the frame that describes it. */
/* determine how many bytes and therefore bitstream frames the audio data precedes it's matching frame */
/* lame_report_fnc(mp->report_err, "hip: main_data_begin = %d, mp->bsize %d, mp->fsizeold %d, mp->ssize %d\n",
sideinfo.main_data_begin, mp->bsize, mp->fsizeold, mp->ssize); */
/* compute the number of frames to backtrack, 4 for the header, ssize already holds the CRC */
/* TODO Erroneously assumes current frame is same as previous frame. */
audioDataInFrame = mp->bsize - 4 - mp->ssize;
framesToBacktrack = (mp->sideinfo.main_data_begin + audioDataInFrame - 1) / audioDataInFrame;
/* lame_report_fnc(mp->report_err, "hip: audioDataInFrame %d framesToBacktrack %d\n", audioDataInFrame, framesToBacktrack); */
return framesToBacktrack;
}
int
decode_layer3_sideinfo(PMPSTR mp)
{
struct frame *fr = &mp->fr;
int stereo = fr->stereo;
int single = fr->single;
int ms_stereo;
int sfreq = fr->sampling_frequency;
int granules;
int ch, gr, databits;
if (stereo == 1) { /* stream is mono */
single = 0;
}
if (fr->mode == MPG_MD_JOINT_STEREO) {
ms_stereo = fr->mode_ext & 0x2;
}
else
ms_stereo = 0;
if (fr->lsf) {
granules = 1;
III_get_side_info_2(mp, stereo, ms_stereo, sfreq, single);
}
else {
granules = 2;
III_get_side_info_1(mp, stereo, ms_stereo, sfreq, single);
}
databits = 0;
for (gr = 0; gr < granules; ++gr) {
for (ch = 0; ch < stereo; ++ch) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
databits += gr_infos->part2_3_length;
}
}
return databits - 8 * mp->sideinfo.main_data_begin;
}
int
decode_layer3_frame(PMPSTR mp, unsigned char *pcm_sample, int *pcm_point,
int (*synth_1to1_mono_ptr) (PMPSTR, real *, unsigned char *, int *),
int (*synth_1to1_ptr) (PMPSTR, real *, int, unsigned char *, int *))
{
int gr, ch, ss, clip = 0;
int scalefacs[2][39]; /* max 39 for short[13][3] mode, mixed: 38, long: 22 */
/* struct III_sideinfo sideinfo; */
struct frame *fr = &(mp->fr);
int stereo = fr->stereo;
int single = fr->single;
int ms_stereo, i_stereo;
int sfreq = fr->sampling_frequency;
int stereo1, granules;
real hybridIn[2][SBLIMIT][SSLIMIT];
real hybridOut[2][SSLIMIT][SBLIMIT];
if (set_pointer(mp, (int) mp->sideinfo.main_data_begin) == MP3_ERR)
return 0;
if (stereo == 1) { /* stream is mono */
stereo1 = 1;
single = 0;
}
else if (single >= 0) /* stream is stereo, but force to mono */
stereo1 = 1;
else
stereo1 = 2;
if (fr->mode == MPG_MD_JOINT_STEREO) {
ms_stereo = fr->mode_ext & 0x2;
i_stereo = fr->mode_ext & 0x1;
}
else
ms_stereo = i_stereo = 0;
if (fr->lsf) {
granules = 1;
}
else {
granules = 2;
}
for (gr = 0; gr < granules; gr++) {
{
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[0].gr[gr]);
long part2bits;
if (fr->lsf)
part2bits = III_get_scale_factors_2(mp, scalefacs[0], gr_infos, 0);
else {
part2bits = III_get_scale_factors_1(mp, scalefacs[0], gr_infos);
}
if (mp->pinfo != NULL) {
int i;
mp->pinfo->sfbits[gr][0] = part2bits;
for (i = 0; i < 39; i++)
mp->pinfo->sfb_s[gr][0][i] = scalefacs[0][i];
}
/* lame_report_fnc(mp->report_err, "calling III dequantize sample 1 gr_infos->part2_3_length %d\n", gr_infos->part2_3_length); */
if (III_dequantize_sample(mp, hybridIn[0], scalefacs[0], gr_infos, sfreq, part2bits))
return clip;
}
if (stereo == 2) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[1].gr[gr]);
long part2bits;
if (fr->lsf)
part2bits = III_get_scale_factors_2(mp, scalefacs[1], gr_infos, i_stereo);
else {
part2bits = III_get_scale_factors_1(mp, scalefacs[1], gr_infos);
}
if (mp->pinfo != NULL) {
int i;
mp->pinfo->sfbits[gr][1] = part2bits;
for (i = 0; i < 39; i++)
mp->pinfo->sfb_s[gr][1][i] = scalefacs[1][i];
}
/* lame_report_fnc(mp->report_err, "calling III dequantize sample 2 gr_infos->part2_3_length %d\n", gr_infos->part2_3_length); */
if (III_dequantize_sample(mp, hybridIn[1], scalefacs[1], gr_infos, sfreq, part2bits))
return clip;
if (ms_stereo) {
int i;
for (i = 0; i < SBLIMIT * SSLIMIT; i++) {
real tmp0, tmp1;
tmp0 = ((real *) hybridIn[0])[i];
tmp1 = ((real *) hybridIn[1])[i];
((real *) hybridIn[1])[i] = tmp0 - tmp1;
((real *) hybridIn[0])[i] = tmp0 + tmp1;
}
}
if (i_stereo)
III_i_stereo(hybridIn, scalefacs[1], gr_infos, sfreq, ms_stereo, fr->lsf);
if (ms_stereo || i_stereo || (single == 3)) {
if (gr_infos->maxb > mp->sideinfo.ch[0].gr[gr].maxb)
mp->sideinfo.ch[0].gr[gr].maxb = gr_infos->maxb;
else
gr_infos->maxb = mp->sideinfo.ch[0].gr[gr].maxb;
}
switch (single) {
case 3:
{
int i;
real *in0 = (real *) hybridIn[0], *in1 = (real *) hybridIn[1];
for (i = 0; i < (int) (SSLIMIT * gr_infos->maxb); i++, in0++)
*in0 = (*in0 + *in1++); /* *0.5 done by pow-scale */
}
break;
case 1:
{
int i;
real *in0 = (real *) hybridIn[0], *in1 = (real *) hybridIn[1];
for (i = 0; i < (int) (SSLIMIT * gr_infos->maxb); i++)
*in0++ = *in1++;
}
break;
}
}
if (mp->pinfo != NULL) {
int i, sb;
float ifqstep;
mp->pinfo->bitrate = tabsel_123[fr->lsf][fr->lay - 1][fr->bitrate_index];
mp->pinfo->sampfreq = freqs[sfreq];
mp->pinfo->emph = fr->emphasis;
mp->pinfo->crc = fr->error_protection;
mp->pinfo->padding = fr->padding;
mp->pinfo->stereo = fr->stereo;
mp->pinfo->js = (fr->mode == MPG_MD_JOINT_STEREO);
mp->pinfo->ms_stereo = ms_stereo;
mp->pinfo->i_stereo = i_stereo;
mp->pinfo->maindata = mp->sideinfo.main_data_begin;
for (ch = 0; ch < stereo1; ch++) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
mp->pinfo->big_values[gr][ch] = gr_infos->big_values;
mp->pinfo->scalefac_scale[gr][ch] = gr_infos->scalefac_scale;
mp->pinfo->mixed[gr][ch] = gr_infos->mixed_block_flag;
mp->pinfo->mpg123blocktype[gr][ch] = gr_infos->block_type;
mp->pinfo->mainbits[gr][ch] = gr_infos->part2_3_length;
mp->pinfo->preflag[gr][ch] = gr_infos->preflag;
if (gr == 1)
mp->pinfo->scfsi[ch] = gr_infos->scfsi;
}
for (ch = 0; ch < stereo1; ch++) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
ifqstep = (mp->pinfo->scalefac_scale[gr][ch] == 0) ? .5 : 1.0;
if (2 == gr_infos->block_type) {
for (i = 0; i < 3; i++) {
for (sb = 0; sb < 12; sb++) {
int j = 3 * sb + i;
/*
is_p = scalefac[sfb*3+lwin-gr_infos->mixed_block_flag];
*/
/* scalefac was copied into pinfo->sfb_s[] above */
mp->pinfo->sfb_s[gr][ch][j] =
-ifqstep * mp->pinfo->sfb_s[gr][ch][j - gr_infos->mixed_block_flag];
mp->pinfo->sfb_s[gr][ch][j] -= 2 * (mp->pinfo->sub_gain[gr][ch][i]);
}
mp->pinfo->sfb_s[gr][ch][3 * sb + i] =
-2 * (mp->pinfo->sub_gain[gr][ch][i]);
}
}
else {
for (sb = 0; sb < 21; sb++) {
/* scalefac was copied into pinfo->sfb[] above */
mp->pinfo->sfb[gr][ch][sb] = mp->pinfo->sfb_s[gr][ch][sb];
if (gr_infos->preflag)
mp->pinfo->sfb[gr][ch][sb] += pretab1[sb];
mp->pinfo->sfb[gr][ch][sb] *= -ifqstep;
}
mp->pinfo->sfb[gr][ch][21] = 0;
}
}
for (ch = 0; ch < stereo1; ch++) {
int j = 0;
for (sb = 0; sb < SBLIMIT; sb++)
for (ss = 0; ss < SSLIMIT; ss++, j++)
mp->pinfo->mpg123xr[gr][ch][j] = hybridIn[ch][sb][ss];
}
}
for (ch = 0; ch < stereo1; ch++) {
struct gr_info_s *gr_infos = &(mp->sideinfo.ch[ch].gr[gr]);
III_antialias(hybridIn[ch], gr_infos);
III_hybrid(mp, hybridIn[ch], hybridOut[ch], ch, gr_infos);
}
for (ss = 0; ss < SSLIMIT; ss++) {
if (single >= 0) {
clip += (*synth_1to1_mono_ptr) (mp, hybridOut[0][ss], pcm_sample, pcm_point);
}
else {
int p1 = *pcm_point;
clip += (*synth_1to1_ptr) (mp, hybridOut[0][ss], 0, pcm_sample, &p1);
clip += (*synth_1to1_ptr) (mp, hybridOut[1][ss], 1, pcm_sample, pcm_point);
}
}
}
return clip;
}