333 lines
9.2 KiB
C++
333 lines
9.2 KiB
C++
|
/*
|
||
|
* Paula.cpp
|
||
|
* ---------
|
||
|
* Purpose: Emulating the Amiga's sound chip, Paula, by implementing resampling using band-limited steps (BLEPs)
|
||
|
* Notes : The BLEP table generator code is a translation of Antti S. Lankila's original Python code.
|
||
|
* Authors: OpenMPT Devs
|
||
|
* Antti S. Lankila
|
||
|
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
|
||
|
*/
|
||
|
|
||
|
#include "stdafx.h"
|
||
|
#include "Paula.h"
|
||
|
#include "TinyFFT.h"
|
||
|
#include "Tables.h"
|
||
|
#include "mpt/base/numbers.hpp"
|
||
|
|
||
|
#include <complex>
|
||
|
#include <numeric>
|
||
|
|
||
|
OPENMPT_NAMESPACE_BEGIN
|
||
|
|
||
|
namespace Paula
|
||
|
{
|
||
|
|
||
|
namespace
|
||
|
{
|
||
|
|
||
|
MPT_NOINLINE std::vector<double> KaiserFIR(int numTaps, double cutoff, double beta)
|
||
|
{
|
||
|
const double izeroBeta = Izero(beta);
|
||
|
const double kPi = 4.0 * std::atan(1.0) * cutoff;
|
||
|
const double xDiv = 1.0 / ((numTaps / 2) * (numTaps / 2));
|
||
|
const int numTapsDiv2 = numTaps / 2;
|
||
|
std::vector<double> result(numTaps);
|
||
|
for(int i = 0; i < numTaps; i++)
|
||
|
{
|
||
|
double fsinc;
|
||
|
if(i == numTapsDiv2)
|
||
|
{
|
||
|
fsinc = 1.0;
|
||
|
} else
|
||
|
{
|
||
|
const double x = i - numTapsDiv2;
|
||
|
const double xPi = x * kPi;
|
||
|
// - sinc - - Kaiser window - -sinc-
|
||
|
fsinc = std::sin(xPi) * Izero(beta * std::sqrt(1 - x * x * xDiv)) / (izeroBeta * xPi);
|
||
|
}
|
||
|
|
||
|
result[i] = fsinc * cutoff;
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
MPT_NOINLINE void FIR_MinPhase(std::vector<double> &table, const TinyFFT &fft)
|
||
|
{
|
||
|
std::vector<std::complex<double>> cepstrum(fft.Size());
|
||
|
MPT_ASSERT(cepstrum.size() >= table.size());
|
||
|
for(size_t i = 0; i < table.size(); i++)
|
||
|
cepstrum[i] = table[i];
|
||
|
// Compute the real cepstrum: fft -> abs + ln -> ifft -> real
|
||
|
fft.FFT(cepstrum);
|
||
|
for(auto &v : cepstrum)
|
||
|
v = std::log(std::abs(v));
|
||
|
fft.IFFT(cepstrum);
|
||
|
fft.Normalize(cepstrum);
|
||
|
|
||
|
// Window the cepstrum in such a way that anticausal components become rejected
|
||
|
for(size_t i = 1; i < cepstrum.size() / 2; i++)
|
||
|
{
|
||
|
cepstrum[i] *= 2;
|
||
|
cepstrum[i + cepstrum.size() / 2] *= 0;
|
||
|
}
|
||
|
|
||
|
// Now cancel the previous steps: fft -> exp -> ifft -> real
|
||
|
fft.FFT(cepstrum);
|
||
|
for(auto &v : cepstrum)
|
||
|
v = std::exp(v);
|
||
|
fft.IFFT(cepstrum);
|
||
|
fft.Normalize(cepstrum);
|
||
|
for(size_t i = 0; i < table.size(); i++)
|
||
|
table[i] = cepstrum[i].real();
|
||
|
}
|
||
|
|
||
|
|
||
|
class BiquadFilter
|
||
|
{
|
||
|
double b0, b1, b2, a1, a2, x1 = 0.0, x2 = 0.0, y1 = 0.0, y2 = 0.0;
|
||
|
|
||
|
double Filter(double x0)
|
||
|
{
|
||
|
double y0 = b0 * x0 + b1 * x1 + b2 * x2 - a1 * y1 - a2 * y2;
|
||
|
x2 = x1;
|
||
|
x1 = x0;
|
||
|
y2 = y1;
|
||
|
y1 = y0;
|
||
|
return y0;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
BiquadFilter(double b0_, double b1_, double b2_, double a1_, double a2_)
|
||
|
: b0(b0_), b1(b1_), b2(b2_), a1(a1_), a2(a2_)
|
||
|
{ }
|
||
|
|
||
|
std::vector<double> Run(std::vector<double> table)
|
||
|
{
|
||
|
x1 = 0.0;
|
||
|
x2 = 0.0;
|
||
|
y1 = 0.0;
|
||
|
y2 = 0.0;
|
||
|
|
||
|
// Initialize filter to stable state
|
||
|
for(int i = 0; i < 10000; i++)
|
||
|
Filter(table[0]);
|
||
|
// Now run the filter
|
||
|
for(auto &v : table)
|
||
|
v = Filter(v);
|
||
|
|
||
|
return table;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
|
||
|
// Observe: a and b are reversed here. To be absolutely clear:
|
||
|
// a is the nominator and b is the denominator. :-/
|
||
|
BiquadFilter ZTransform(double a0, double a1, double a2, double b0, double b1, double b2, double fc, double fs)
|
||
|
{
|
||
|
// Prewarp s - domain coefficients
|
||
|
const double wp = 2.0 * fs * std::tan(mpt::numbers::pi * fc / fs);
|
||
|
a2 /= wp * wp;
|
||
|
a1 /= wp;
|
||
|
b2 /= wp * wp;
|
||
|
b1 /= wp;
|
||
|
|
||
|
// Compute bilinear transform and return it
|
||
|
const double bd = 4 * b2 * fs * fs + 2 * b1 * fs + b0;
|
||
|
return BiquadFilter(
|
||
|
(4 * a2 * fs * fs + 2 * a1 * fs + a0) / bd,
|
||
|
(2 * a0 - 8 * a2 * fs * fs) / bd,
|
||
|
(4 * a2 * fs * fs - 2 * a1 * fs + a0) / bd,
|
||
|
(2 * b0 - 8 * b2 * fs * fs) / bd,
|
||
|
(4 * b2 * fs * fs - 2 * b1 * fs + b0) / bd);
|
||
|
}
|
||
|
|
||
|
|
||
|
BiquadFilter MakeRCLowpass(double sampleRate, double freq)
|
||
|
{
|
||
|
const double omega = (2.0 * mpt::numbers::pi) * freq / sampleRate;
|
||
|
const double term = 1 + 1 / omega;
|
||
|
return BiquadFilter(1 / term, 0.0, 0.0, -1.0 + 1.0 / term, 0.0);
|
||
|
}
|
||
|
|
||
|
|
||
|
BiquadFilter MakeButterworth(double fs, double fc, double res_dB = 0)
|
||
|
{
|
||
|
// 2nd-order Butterworth s-domain coefficients are:
|
||
|
//
|
||
|
// b0 = 1.0 b1 = 0 b2 = 0
|
||
|
// a0 = 1 a1 = sqrt(2) a2 = 1
|
||
|
//
|
||
|
// by tweaking the a1 parameter, some resonance can be produced.
|
||
|
|
||
|
const double res = std::pow(10.0, (-res_dB / 10.0 / 2.0));
|
||
|
return ZTransform(1, 0, 0, 1, std::sqrt(2) * res, 1, fc, fs);
|
||
|
}
|
||
|
|
||
|
|
||
|
MPT_NOINLINE void Integrate(std::vector<double> &table)
|
||
|
{
|
||
|
const double total = std::accumulate(table.begin(), table.end(), 0.0);
|
||
|
double startVal = -total;
|
||
|
|
||
|
for(auto &v : table)
|
||
|
{
|
||
|
startVal += v;
|
||
|
v = startVal;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
MPT_NOINLINE void Quantize(const std::vector<double> &in, Paula::BlepArray &quantized)
|
||
|
{
|
||
|
MPT_ASSERT(in.size() == Paula::BLEP_SIZE);
|
||
|
constexpr int fact = 1 << Paula::BLEP_SCALE;
|
||
|
const double cv = fact / (in.back() - in.front());
|
||
|
|
||
|
for(int i = 0; i < Paula::BLEP_SIZE; i++)
|
||
|
{
|
||
|
double val = in[i] * cv;
|
||
|
#ifdef MPT_INTMIXER
|
||
|
val = mpt::round(val);
|
||
|
#endif
|
||
|
quantized[i] = static_cast<mixsample_t>(-val);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
void BlepTables::InitTables()
|
||
|
{
|
||
|
constexpr double sampleRate = Paula::PAULA_HZ;
|
||
|
|
||
|
// Because Amiga only has 84 dB SNR, the noise floor is low enough with -90 dB.
|
||
|
// A500 model uses slightly lower-quality kaiser window to obtain slightly
|
||
|
// steeper stopband attenuation. The fixed filters attenuates the sidelobes by
|
||
|
// 12 dB, compensating for the worse performance of the kaiser window.
|
||
|
|
||
|
// 21 kHz stopband is not fully attenuated by 22 kHz. If the sampling frequency
|
||
|
// is 44.1 kHz, all frequencies above 22 kHz will alias over 20 kHz, thus inaudible.
|
||
|
// The output should be aliasingless for 48 kHz sampling frequency.
|
||
|
auto unfilteredA500 = KaiserFIR(Paula::BLEP_SIZE, 21000.0 / sampleRate * 2.0, 8.0);
|
||
|
auto unfilteredA1200 = KaiserFIR(Paula::BLEP_SIZE, 21000.0 / sampleRate * 2.0, 9.0);
|
||
|
// Move filtering effects to start to allow IIRs more time to settle
|
||
|
constexpr size_t padSize = 8;
|
||
|
constexpr int fftSize = static_cast<int>(mpt::bit_width(size_t(Paula::BLEP_SIZE)) + mpt::bit_width(padSize) - 2);
|
||
|
const TinyFFT fft(fftSize);
|
||
|
FIR_MinPhase(unfilteredA500, fft);
|
||
|
FIR_MinPhase(unfilteredA1200, fft);
|
||
|
|
||
|
// Make digital models for the filters on Amiga 500 and 1200.
|
||
|
auto filterFixed5kHz = MakeRCLowpass(sampleRate, 4900.0);
|
||
|
// The leakage filter seems to reduce treble in both models a bit
|
||
|
// The A500 filter seems to be well modelled only with a 4.9 kHz
|
||
|
// filter although the component values would suggest 5 kHz filter.
|
||
|
auto filterLeakage = MakeRCLowpass(sampleRate, 32000.0);
|
||
|
auto filterLED = MakeButterworth(sampleRate, 3275.0, -0.70);
|
||
|
|
||
|
// Apply fixed filter to A500
|
||
|
auto amiga500Off = filterFixed5kHz.Run(unfilteredA500);
|
||
|
// Produce the filtered outputs
|
||
|
auto amiga1200Off = filterLeakage.Run(unfilteredA1200);
|
||
|
|
||
|
// Produce LED filters
|
||
|
auto amiga500On = filterLED.Run(amiga500Off);
|
||
|
auto amiga1200On = filterLED.Run(amiga1200Off);
|
||
|
|
||
|
// Integrate to produce blep
|
||
|
Integrate(amiga500Off);
|
||
|
Integrate(amiga500On);
|
||
|
Integrate(amiga1200Off);
|
||
|
Integrate(amiga1200On);
|
||
|
Integrate(unfilteredA1200);
|
||
|
|
||
|
// Quantize and scale
|
||
|
Quantize(amiga500Off, WinSincIntegral[A500Off]);
|
||
|
Quantize(amiga500On, WinSincIntegral[A500On]);
|
||
|
Quantize(amiga1200Off, WinSincIntegral[A1200Off]);
|
||
|
Quantize(amiga1200On, WinSincIntegral[A1200On]);
|
||
|
Quantize(unfilteredA1200, WinSincIntegral[Unfiltered]);
|
||
|
}
|
||
|
|
||
|
|
||
|
const Paula::BlepArray &BlepTables::GetAmigaTable(Resampling::AmigaFilter amigaType, bool enableFilter) const
|
||
|
{
|
||
|
if(amigaType == Resampling::AmigaFilter::A500)
|
||
|
return enableFilter ? WinSincIntegral[A500On] : WinSincIntegral[A500Off];
|
||
|
if(amigaType == Resampling::AmigaFilter::A1200)
|
||
|
return enableFilter ? WinSincIntegral[A1200On] : WinSincIntegral[A1200Off];
|
||
|
return WinSincIntegral[Unfiltered];
|
||
|
}
|
||
|
|
||
|
|
||
|
// we do not initialize blepState here
|
||
|
// cppcheck-suppress uninitMemberVar
|
||
|
State::State(uint32 sampleRate)
|
||
|
{
|
||
|
double amigaClocksPerSample = static_cast<double>(PAULA_HZ) / sampleRate;
|
||
|
numSteps = static_cast<int>(amigaClocksPerSample / MINIMUM_INTERVAL);
|
||
|
stepRemainder = SamplePosition::FromDouble(amigaClocksPerSample - numSteps * MINIMUM_INTERVAL);
|
||
|
remainder = SamplePosition(0);
|
||
|
}
|
||
|
|
||
|
|
||
|
void State::Reset()
|
||
|
{
|
||
|
remainder = SamplePosition(0);
|
||
|
activeBleps = 0;
|
||
|
firstBlep = MAX_BLEPS / 2u;
|
||
|
globalOutputLevel = 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void State::InputSample(int16 sample)
|
||
|
{
|
||
|
if(sample != globalOutputLevel)
|
||
|
{
|
||
|
// Start a new blep: level is the difference, age (or phase) is 0 clocks.
|
||
|
firstBlep = (firstBlep - 1u) % MAX_BLEPS;
|
||
|
if(activeBleps < std::size(blepState))
|
||
|
activeBleps++;
|
||
|
blepState[firstBlep].age = 0;
|
||
|
blepState[firstBlep].level = sample - globalOutputLevel;
|
||
|
globalOutputLevel = sample;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Return output simulated as series of bleps
|
||
|
int State::OutputSample(const BlepArray &WinSincIntegral)
|
||
|
{
|
||
|
int output = globalOutputLevel * (1 << Paula::BLEP_SCALE);
|
||
|
uint32 lastBlep = firstBlep + activeBleps;
|
||
|
for(uint32 i = firstBlep; i != lastBlep; i++)
|
||
|
{
|
||
|
const auto &blep = blepState[i % MAX_BLEPS];
|
||
|
output -= WinSincIntegral[blep.age] * blep.level;
|
||
|
}
|
||
|
output /= (1 << (Paula::BLEP_SCALE - 2)); // - 2 to compensate for the fact that we reduced the input sample bit depth
|
||
|
|
||
|
return output;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Advance the simulation by given number of clock ticks
|
||
|
void State::Clock(int cycles)
|
||
|
{
|
||
|
uint32 lastBlep = firstBlep + activeBleps;
|
||
|
for(uint32 i = firstBlep; i != lastBlep; i++)
|
||
|
{
|
||
|
auto &blep = blepState[i % MAX_BLEPS];
|
||
|
blep.age += static_cast<uint16>(cycles);
|
||
|
if(blep.age >= Paula::BLEP_SIZE)
|
||
|
{
|
||
|
activeBleps = static_cast<uint16>(i - firstBlep);
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
OPENMPT_NAMESPACE_END
|