1581 lines
46 KiB
C
1581 lines
46 KiB
C
|
/*
|
||
|
* MP3 quantization
|
||
|
*
|
||
|
* Copyright (c) 1999-2000 Mark Taylor
|
||
|
* Copyright (c) 2000-2012 Robert Hegemann
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Library General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Library General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Library General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
/* $Id: vbrquantize.c,v 1.142 2012/02/07 13:36:35 robert Exp $ */
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
# include <config.h>
|
||
|
#endif
|
||
|
|
||
|
|
||
|
#include "lame.h"
|
||
|
#include "machine.h"
|
||
|
#include "encoder.h"
|
||
|
#include "util.h"
|
||
|
#include "vbrquantize.h"
|
||
|
#include "quantize_pvt.h"
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
struct algo_s;
|
||
|
typedef struct algo_s algo_t;
|
||
|
|
||
|
typedef void (*alloc_sf_f) (const algo_t *, const int *, const int *, int);
|
||
|
typedef uint8_t (*find_sf_f) (const FLOAT *, const FLOAT *, FLOAT, unsigned int, uint8_t);
|
||
|
|
||
|
struct algo_s {
|
||
|
alloc_sf_f alloc;
|
||
|
find_sf_f find;
|
||
|
const FLOAT *xr34orig;
|
||
|
lame_internal_flags *gfc;
|
||
|
gr_info *cod_info;
|
||
|
int mingain_l;
|
||
|
int mingain_s[3];
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
/* Remarks on optimizing compilers:
|
||
|
*
|
||
|
* the MSVC compiler may get into aliasing problems when accessing
|
||
|
* memory through the fi_union. declaring it volatile does the trick here
|
||
|
*
|
||
|
* the calc_sfb_noise_* functions are not inlined because the intel compiler
|
||
|
* optimized executeables won't work as expected anymore
|
||
|
*/
|
||
|
|
||
|
#ifdef _MSC_VER
|
||
|
# if _MSC_VER < 1400
|
||
|
# define VOLATILE volatile
|
||
|
# else
|
||
|
# define VOLATILE
|
||
|
# endif
|
||
|
#else
|
||
|
# define VOLATILE
|
||
|
#endif
|
||
|
|
||
|
typedef VOLATILE union {
|
||
|
float f;
|
||
|
int i;
|
||
|
} fi_union;
|
||
|
|
||
|
|
||
|
|
||
|
#ifdef TAKEHIRO_IEEE754_HACK
|
||
|
#define DOUBLEX double
|
||
|
#else
|
||
|
#define DOUBLEX FLOAT
|
||
|
#endif
|
||
|
|
||
|
#define MAGIC_FLOAT_def (65536*(128))
|
||
|
#define MAGIC_INT_def 0x4b000000
|
||
|
|
||
|
#ifdef TAKEHIRO_IEEE754_HACK
|
||
|
#else
|
||
|
/*********************************************************************
|
||
|
* XRPOW_FTOI is a macro to convert floats to ints.
|
||
|
* if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]
|
||
|
* ROUNDFAC= -0.0946
|
||
|
*
|
||
|
* if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]
|
||
|
* ROUNDFAC=0.4054
|
||
|
*********************************************************************/
|
||
|
# define QUANTFAC(rx) adj43[rx]
|
||
|
# define ROUNDFAC_def 0.4054f
|
||
|
# define XRPOW_FTOI(src,dest) ((dest) = (int)(src))
|
||
|
#endif
|
||
|
|
||
|
static int const MAGIC_INT = MAGIC_INT_def;
|
||
|
#ifndef TAKEHIRO_IEEE754_HACK
|
||
|
static DOUBLEX const ROUNDFAC = ROUNDFAC_def;
|
||
|
#endif
|
||
|
static DOUBLEX const MAGIC_FLOAT = MAGIC_FLOAT_def;
|
||
|
|
||
|
|
||
|
inline static float
|
||
|
vec_max_c(const float * xr34, unsigned int bw)
|
||
|
{
|
||
|
float xfsf = 0;
|
||
|
unsigned int i = bw >> 2u;
|
||
|
unsigned int const remaining = (bw & 0x03u);
|
||
|
|
||
|
while (i-- > 0) {
|
||
|
if (xfsf < xr34[0]) {
|
||
|
xfsf = xr34[0];
|
||
|
}
|
||
|
if (xfsf < xr34[1]) {
|
||
|
xfsf = xr34[1];
|
||
|
}
|
||
|
if (xfsf < xr34[2]) {
|
||
|
xfsf = xr34[2];
|
||
|
}
|
||
|
if (xfsf < xr34[3]) {
|
||
|
xfsf = xr34[3];
|
||
|
}
|
||
|
xr34 += 4;
|
||
|
}
|
||
|
switch( remaining ) {
|
||
|
case 3: if (xfsf < xr34[2]) xfsf = xr34[2];
|
||
|
case 2: if (xfsf < xr34[1]) xfsf = xr34[1];
|
||
|
case 1: if (xfsf < xr34[0]) xfsf = xr34[0];
|
||
|
default: break;
|
||
|
}
|
||
|
return xfsf;
|
||
|
}
|
||
|
|
||
|
|
||
|
inline static uint8_t
|
||
|
find_lowest_scalefac(const FLOAT xr34)
|
||
|
{
|
||
|
uint8_t sf_ok = 255;
|
||
|
uint8_t sf = 128, delsf = 64;
|
||
|
uint8_t i;
|
||
|
FLOAT const ixmax_val = IXMAX_VAL;
|
||
|
for (i = 0; i < 8; ++i) {
|
||
|
FLOAT const xfsf = ipow20[sf] * xr34;
|
||
|
if (xfsf <= ixmax_val) {
|
||
|
sf_ok = sf;
|
||
|
sf -= delsf;
|
||
|
}
|
||
|
else {
|
||
|
sf += delsf;
|
||
|
}
|
||
|
delsf >>= 1;
|
||
|
}
|
||
|
return sf_ok;
|
||
|
}
|
||
|
|
||
|
|
||
|
inline static void
|
||
|
k_34_4(DOUBLEX x[4], int l3[4])
|
||
|
{
|
||
|
#ifdef TAKEHIRO_IEEE754_HACK
|
||
|
fi_union fi[4];
|
||
|
|
||
|
assert(x[0] <= IXMAX_VAL && x[1] <= IXMAX_VAL && x[2] <= IXMAX_VAL && x[3] <= IXMAX_VAL);
|
||
|
x[0] += MAGIC_FLOAT;
|
||
|
fi[0].f = x[0];
|
||
|
x[1] += MAGIC_FLOAT;
|
||
|
fi[1].f = x[1];
|
||
|
x[2] += MAGIC_FLOAT;
|
||
|
fi[2].f = x[2];
|
||
|
x[3] += MAGIC_FLOAT;
|
||
|
fi[3].f = x[3];
|
||
|
fi[0].f = x[0] + adj43asm[fi[0].i - MAGIC_INT];
|
||
|
fi[1].f = x[1] + adj43asm[fi[1].i - MAGIC_INT];
|
||
|
fi[2].f = x[2] + adj43asm[fi[2].i - MAGIC_INT];
|
||
|
fi[3].f = x[3] + adj43asm[fi[3].i - MAGIC_INT];
|
||
|
l3[0] = fi[0].i - MAGIC_INT;
|
||
|
l3[1] = fi[1].i - MAGIC_INT;
|
||
|
l3[2] = fi[2].i - MAGIC_INT;
|
||
|
l3[3] = fi[3].i - MAGIC_INT;
|
||
|
#else
|
||
|
assert(x[0] <= IXMAX_VAL && x[1] <= IXMAX_VAL && x[2] <= IXMAX_VAL && x[3] <= IXMAX_VAL);
|
||
|
XRPOW_FTOI(x[0], l3[0]);
|
||
|
XRPOW_FTOI(x[1], l3[1]);
|
||
|
XRPOW_FTOI(x[2], l3[2]);
|
||
|
XRPOW_FTOI(x[3], l3[3]);
|
||
|
x[0] += QUANTFAC(l3[0]);
|
||
|
x[1] += QUANTFAC(l3[1]);
|
||
|
x[2] += QUANTFAC(l3[2]);
|
||
|
x[3] += QUANTFAC(l3[3]);
|
||
|
XRPOW_FTOI(x[0], l3[0]);
|
||
|
XRPOW_FTOI(x[1], l3[1]);
|
||
|
XRPOW_FTOI(x[2], l3[2]);
|
||
|
XRPOW_FTOI(x[3], l3[3]);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/* do call the calc_sfb_noise_* functions only with sf values
|
||
|
* for which holds: sfpow34*xr34 <= IXMAX_VAL
|
||
|
*/
|
||
|
|
||
|
static FLOAT
|
||
|
calc_sfb_noise_x34(const FLOAT * xr, const FLOAT * xr34, unsigned int bw, uint8_t sf)
|
||
|
{
|
||
|
DOUBLEX x[4];
|
||
|
int l3[4];
|
||
|
const FLOAT sfpow = pow20[sf + Q_MAX2]; /*pow(2.0,sf/4.0); */
|
||
|
const FLOAT sfpow34 = ipow20[sf]; /*pow(sfpow,-3.0/4.0); */
|
||
|
|
||
|
FLOAT xfsf = 0;
|
||
|
unsigned int i = bw >> 2u;
|
||
|
unsigned int const remaining = (bw & 0x03u);
|
||
|
|
||
|
while (i-- > 0) {
|
||
|
x[0] = sfpow34 * xr34[0];
|
||
|
x[1] = sfpow34 * xr34[1];
|
||
|
x[2] = sfpow34 * xr34[2];
|
||
|
x[3] = sfpow34 * xr34[3];
|
||
|
|
||
|
k_34_4(x, l3);
|
||
|
|
||
|
x[0] = fabsf(xr[0]) - sfpow * pow43[l3[0]];
|
||
|
x[1] = fabsf(xr[1]) - sfpow * pow43[l3[1]];
|
||
|
x[2] = fabsf(xr[2]) - sfpow * pow43[l3[2]];
|
||
|
x[3] = fabsf(xr[3]) - sfpow * pow43[l3[3]];
|
||
|
xfsf += (x[0] * x[0] + x[1] * x[1]) + (x[2] * x[2] + x[3] * x[3]);
|
||
|
|
||
|
xr += 4;
|
||
|
xr34 += 4;
|
||
|
}
|
||
|
if (remaining) {
|
||
|
x[0] = x[1] = x[2] = x[3] = 0;
|
||
|
switch( remaining ) {
|
||
|
case 3: x[2] = sfpow34 * xr34[2];
|
||
|
case 2: x[1] = sfpow34 * xr34[1];
|
||
|
case 1: x[0] = sfpow34 * xr34[0];
|
||
|
}
|
||
|
|
||
|
k_34_4(x, l3);
|
||
|
x[0] = x[1] = x[2] = x[3] = 0;
|
||
|
|
||
|
switch( remaining ) {
|
||
|
case 3: x[2] = fabsf(xr[2]) - sfpow * pow43[l3[2]];
|
||
|
case 2: x[1] = fabsf(xr[1]) - sfpow * pow43[l3[1]];
|
||
|
case 1: x[0] = fabsf(xr[0]) - sfpow * pow43[l3[0]];
|
||
|
}
|
||
|
xfsf += (x[0] * x[0] + x[1] * x[1]) + (x[2] * x[2] + x[3] * x[3]);
|
||
|
}
|
||
|
return xfsf;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
struct calc_noise_cache {
|
||
|
int valid;
|
||
|
FLOAT value;
|
||
|
};
|
||
|
|
||
|
typedef struct calc_noise_cache calc_noise_cache_t;
|
||
|
|
||
|
|
||
|
static uint8_t
|
||
|
tri_calc_sfb_noise_x34(const FLOAT * xr, const FLOAT * xr34, FLOAT l3_xmin, unsigned int bw,
|
||
|
uint8_t sf, calc_noise_cache_t * did_it)
|
||
|
{
|
||
|
if (did_it[sf].valid == 0) {
|
||
|
did_it[sf].valid = 1;
|
||
|
did_it[sf].value = calc_sfb_noise_x34(xr, xr34, bw, sf);
|
||
|
}
|
||
|
if (l3_xmin < did_it[sf].value) {
|
||
|
return 1;
|
||
|
}
|
||
|
if (sf < 255) {
|
||
|
uint8_t const sf_x = sf + 1;
|
||
|
if (did_it[sf_x].valid == 0) {
|
||
|
did_it[sf_x].valid = 1;
|
||
|
did_it[sf_x].value = calc_sfb_noise_x34(xr, xr34, bw, sf_x);
|
||
|
}
|
||
|
if (l3_xmin < did_it[sf_x].value) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
if (sf > 0) {
|
||
|
uint8_t const sf_x = sf - 1;
|
||
|
if (did_it[sf_x].valid == 0) {
|
||
|
did_it[sf_x].valid = 1;
|
||
|
did_it[sf_x].value = calc_sfb_noise_x34(xr, xr34, bw, sf_x);
|
||
|
}
|
||
|
if (l3_xmin < did_it[sf_x].value) {
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
/**
|
||
|
* Robert Hegemann 2001-05-01
|
||
|
* calculates quantization step size determined by allowed masking
|
||
|
*/
|
||
|
static int
|
||
|
calc_scalefac(FLOAT l3_xmin, int bw)
|
||
|
{
|
||
|
FLOAT const c = 5.799142446; /* 10 * 10^(2/3) * log10(4/3) */
|
||
|
return 210 + (int) (c * log10f(l3_xmin / bw) - .5f);
|
||
|
}
|
||
|
|
||
|
static uint8_t
|
||
|
guess_scalefac_x34(const FLOAT * xr, const FLOAT * xr34, FLOAT l3_xmin, unsigned int bw, uint8_t sf_min)
|
||
|
{
|
||
|
int const guess = calc_scalefac(l3_xmin, bw);
|
||
|
if (guess < sf_min) return sf_min;
|
||
|
if (guess >= 255) return 255;
|
||
|
(void) xr;
|
||
|
(void) xr34;
|
||
|
return guess;
|
||
|
}
|
||
|
|
||
|
|
||
|
/* the find_scalefac* routines calculate
|
||
|
* a quantization step size which would
|
||
|
* introduce as much noise as is allowed.
|
||
|
* The larger the step size the more
|
||
|
* quantization noise we'll get. The
|
||
|
* scalefactors are there to lower the
|
||
|
* global step size, allowing limited
|
||
|
* differences in quantization step sizes
|
||
|
* per band (shaping the noise).
|
||
|
*/
|
||
|
|
||
|
static uint8_t
|
||
|
find_scalefac_x34(const FLOAT * xr, const FLOAT * xr34, FLOAT l3_xmin, unsigned int bw,
|
||
|
uint8_t sf_min)
|
||
|
{
|
||
|
calc_noise_cache_t did_it[256];
|
||
|
uint8_t sf = 128, sf_ok = 255, delsf = 128, seen_good_one = 0, i;
|
||
|
memset(did_it, 0, sizeof(did_it));
|
||
|
for (i = 0; i < 8; ++i) {
|
||
|
delsf >>= 1;
|
||
|
if (sf <= sf_min) {
|
||
|
sf += delsf;
|
||
|
}
|
||
|
else {
|
||
|
uint8_t const bad = tri_calc_sfb_noise_x34(xr, xr34, l3_xmin, bw, sf, did_it);
|
||
|
if (bad) { /* distortion. try a smaller scalefactor */
|
||
|
sf -= delsf;
|
||
|
}
|
||
|
else {
|
||
|
sf_ok = sf;
|
||
|
sf += delsf;
|
||
|
seen_good_one = 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* returning a scalefac without distortion, if possible
|
||
|
*/
|
||
|
if (seen_good_one > 0) {
|
||
|
sf = sf_ok;
|
||
|
}
|
||
|
if (sf <= sf_min) {
|
||
|
sf = sf_min;
|
||
|
}
|
||
|
return sf;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/***********************************************************************
|
||
|
*
|
||
|
* calc_short_block_vbr_sf()
|
||
|
* calc_long_block_vbr_sf()
|
||
|
*
|
||
|
* Mark Taylor 2000-??-??
|
||
|
* Robert Hegemann 2000-10-25 made functions of it
|
||
|
*
|
||
|
***********************************************************************/
|
||
|
|
||
|
/* a variation for vbr-mtrh */
|
||
|
static int
|
||
|
block_sf(algo_t * that, const FLOAT l3_xmin[SFBMAX], int vbrsf[SFBMAX], int vbrsfmin[SFBMAX])
|
||
|
{
|
||
|
FLOAT max_xr34;
|
||
|
const FLOAT *const xr = &that->cod_info->xr[0];
|
||
|
const FLOAT *const xr34_orig = &that->xr34orig[0];
|
||
|
const int *const width = &that->cod_info->width[0];
|
||
|
const char *const energy_above_cutoff = &that->cod_info->energy_above_cutoff[0];
|
||
|
unsigned int const max_nonzero_coeff = (unsigned int) that->cod_info->max_nonzero_coeff;
|
||
|
uint8_t maxsf = 0;
|
||
|
int sfb = 0, m_o = -1;
|
||
|
unsigned int j = 0, i = 0;
|
||
|
int const psymax = that->cod_info->psymax;
|
||
|
|
||
|
assert(that->cod_info->max_nonzero_coeff >= 0);
|
||
|
|
||
|
that->mingain_l = 0;
|
||
|
that->mingain_s[0] = 0;
|
||
|
that->mingain_s[1] = 0;
|
||
|
that->mingain_s[2] = 0;
|
||
|
while (j <= max_nonzero_coeff) {
|
||
|
unsigned int const w = (unsigned int) width[sfb];
|
||
|
unsigned int const m = (unsigned int) (max_nonzero_coeff - j + 1);
|
||
|
unsigned int l = w;
|
||
|
uint8_t m1, m2;
|
||
|
if (l > m) {
|
||
|
l = m;
|
||
|
}
|
||
|
max_xr34 = vec_max_c(&xr34_orig[j], l);
|
||
|
|
||
|
m1 = find_lowest_scalefac(max_xr34);
|
||
|
vbrsfmin[sfb] = m1;
|
||
|
if (that->mingain_l < m1) {
|
||
|
that->mingain_l = m1;
|
||
|
}
|
||
|
if (that->mingain_s[i] < m1) {
|
||
|
that->mingain_s[i] = m1;
|
||
|
}
|
||
|
if (++i > 2) {
|
||
|
i = 0;
|
||
|
}
|
||
|
if (sfb < psymax && w > 2) { /* mpeg2.5 at 8 kHz doesn't use all scalefactors, unused have width 2 */
|
||
|
if (energy_above_cutoff[sfb]) {
|
||
|
m2 = that->find(&xr[j], &xr34_orig[j], l3_xmin[sfb], l, m1);
|
||
|
#if 0
|
||
|
if (0) {
|
||
|
/** Robert Hegemann 2007-09-29:
|
||
|
* It seems here is some more potential for speed improvements.
|
||
|
* Current find method does 11-18 quantization calculations.
|
||
|
* Using a "good guess" may help to reduce this amount.
|
||
|
*/
|
||
|
uint8_t guess = calc_scalefac(l3_xmin[sfb], l);
|
||
|
DEBUGF(that->gfc, "sfb=%3d guess=%3d found=%3d diff=%3d\n", sfb, guess, m2,
|
||
|
m2 - guess);
|
||
|
}
|
||
|
#endif
|
||
|
if (maxsf < m2) {
|
||
|
maxsf = m2;
|
||
|
}
|
||
|
if (m_o < m2 && m2 < 255) {
|
||
|
m_o = m2;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
m2 = 255;
|
||
|
maxsf = 255;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
if (maxsf < m1) {
|
||
|
maxsf = m1;
|
||
|
}
|
||
|
m2 = maxsf;
|
||
|
}
|
||
|
vbrsf[sfb] = m2;
|
||
|
++sfb;
|
||
|
j += w;
|
||
|
}
|
||
|
for (; sfb < SFBMAX; ++sfb) {
|
||
|
vbrsf[sfb] = maxsf;
|
||
|
vbrsfmin[sfb] = 0;
|
||
|
}
|
||
|
if (m_o > -1) {
|
||
|
maxsf = m_o;
|
||
|
for (sfb = 0; sfb < SFBMAX; ++sfb) {
|
||
|
if (vbrsf[sfb] == 255) {
|
||
|
vbrsf[sfb] = m_o;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return maxsf;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/***********************************************************************
|
||
|
*
|
||
|
* quantize xr34 based on scalefactors
|
||
|
*
|
||
|
* block_xr34
|
||
|
*
|
||
|
* Mark Taylor 2000-??-??
|
||
|
* Robert Hegemann 2000-10-20 made functions of them
|
||
|
*
|
||
|
***********************************************************************/
|
||
|
|
||
|
static void
|
||
|
quantize_x34(const algo_t * that)
|
||
|
{
|
||
|
DOUBLEX x[4];
|
||
|
const FLOAT *xr34_orig = that->xr34orig;
|
||
|
gr_info *const cod_info = that->cod_info;
|
||
|
int const ifqstep = (cod_info->scalefac_scale == 0) ? 2 : 4;
|
||
|
int *l3 = cod_info->l3_enc;
|
||
|
unsigned int j = 0, sfb = 0;
|
||
|
unsigned int const max_nonzero_coeff = (unsigned int) cod_info->max_nonzero_coeff;
|
||
|
|
||
|
assert(cod_info->max_nonzero_coeff >= 0);
|
||
|
assert(cod_info->max_nonzero_coeff < 576);
|
||
|
|
||
|
while (j <= max_nonzero_coeff) {
|
||
|
int const s =
|
||
|
(cod_info->scalefac[sfb] + (cod_info->preflag ? pretab[sfb] : 0)) * ifqstep
|
||
|
+ cod_info->subblock_gain[cod_info->window[sfb]] * 8;
|
||
|
uint8_t const sfac = (uint8_t) (cod_info->global_gain - s);
|
||
|
FLOAT const sfpow34 = ipow20[sfac];
|
||
|
unsigned int const w = (unsigned int) cod_info->width[sfb];
|
||
|
unsigned int const m = (unsigned int) (max_nonzero_coeff - j + 1);
|
||
|
unsigned int i, remaining;
|
||
|
|
||
|
assert((cod_info->global_gain - s) >= 0);
|
||
|
assert(cod_info->width[sfb] >= 0);
|
||
|
j += w;
|
||
|
++sfb;
|
||
|
|
||
|
i = (w <= m) ? w : m;
|
||
|
remaining = (i & 0x03u);
|
||
|
i >>= 2u;
|
||
|
|
||
|
while (i-- > 0) {
|
||
|
x[0] = sfpow34 * xr34_orig[0];
|
||
|
x[1] = sfpow34 * xr34_orig[1];
|
||
|
x[2] = sfpow34 * xr34_orig[2];
|
||
|
x[3] = sfpow34 * xr34_orig[3];
|
||
|
|
||
|
k_34_4(x, l3);
|
||
|
|
||
|
l3 += 4;
|
||
|
xr34_orig += 4;
|
||
|
}
|
||
|
if (remaining) {
|
||
|
int tmp_l3[4];
|
||
|
x[0] = x[1] = x[2] = x[3] = 0;
|
||
|
switch( remaining ) {
|
||
|
case 3: x[2] = sfpow34 * xr34_orig[2];
|
||
|
case 2: x[1] = sfpow34 * xr34_orig[1];
|
||
|
case 1: x[0] = sfpow34 * xr34_orig[0];
|
||
|
}
|
||
|
|
||
|
k_34_4(x, tmp_l3);
|
||
|
|
||
|
switch( remaining ) {
|
||
|
case 3: l3[2] = tmp_l3[2];
|
||
|
case 2: l3[1] = tmp_l3[1];
|
||
|
case 1: l3[0] = tmp_l3[0];
|
||
|
}
|
||
|
|
||
|
l3 += remaining;
|
||
|
xr34_orig += remaining;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static const uint8_t max_range_short[SBMAX_s * 3] = {
|
||
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
|
||
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
||
|
0, 0, 0
|
||
|
};
|
||
|
|
||
|
static const uint8_t max_range_long[SBMAX_l] = {
|
||
|
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 0
|
||
|
};
|
||
|
|
||
|
static const uint8_t max_range_long_lsf_pretab[SBMAX_l] = {
|
||
|
7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
sfb=0..5 scalefac < 16
|
||
|
sfb>5 scalefac < 8
|
||
|
|
||
|
ifqstep = ( cod_info->scalefac_scale == 0 ) ? 2 : 4;
|
||
|
ol_sf = (cod_info->global_gain-210.0);
|
||
|
ol_sf -= 8*cod_info->subblock_gain[i];
|
||
|
ol_sf -= ifqstep*scalefac[gr][ch].s[sfb][i];
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
set_subblock_gain(gr_info * cod_info, const int mingain_s[3], int sf[])
|
||
|
{
|
||
|
const int maxrange1 = 15, maxrange2 = 7;
|
||
|
const int ifqstepShift = (cod_info->scalefac_scale == 0) ? 1 : 2;
|
||
|
int *const sbg = cod_info->subblock_gain;
|
||
|
unsigned int const psymax = (unsigned int) cod_info->psymax;
|
||
|
unsigned int psydiv = 18;
|
||
|
int sbg0, sbg1, sbg2;
|
||
|
unsigned int sfb, i;
|
||
|
int min_sbg = 7;
|
||
|
|
||
|
if (psydiv > psymax) {
|
||
|
psydiv = psymax;
|
||
|
}
|
||
|
for (i = 0; i < 3; ++i) {
|
||
|
int maxsf1 = 0, maxsf2 = 0, minsf = 1000;
|
||
|
/* see if we should use subblock gain */
|
||
|
for (sfb = i; sfb < psydiv; sfb += 3) { /* part 1 */
|
||
|
int const v = -sf[sfb];
|
||
|
if (maxsf1 < v) {
|
||
|
maxsf1 = v;
|
||
|
}
|
||
|
if (minsf > v) {
|
||
|
minsf = v;
|
||
|
}
|
||
|
}
|
||
|
for (; sfb < SFBMAX; sfb += 3) { /* part 2 */
|
||
|
int const v = -sf[sfb];
|
||
|
if (maxsf2 < v) {
|
||
|
maxsf2 = v;
|
||
|
}
|
||
|
if (minsf > v) {
|
||
|
minsf = v;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* boost subblock gain as little as possible so we can
|
||
|
* reach maxsf1 with scalefactors
|
||
|
* 8*sbg >= maxsf1
|
||
|
*/
|
||
|
{
|
||
|
int const m1 = maxsf1 - (maxrange1 << ifqstepShift);
|
||
|
int const m2 = maxsf2 - (maxrange2 << ifqstepShift);
|
||
|
|
||
|
maxsf1 = Max(m1, m2);
|
||
|
}
|
||
|
if (minsf > 0) {
|
||
|
sbg[i] = minsf >> 3;
|
||
|
}
|
||
|
else {
|
||
|
sbg[i] = 0;
|
||
|
}
|
||
|
if (maxsf1 > 0) {
|
||
|
int const m1 = sbg[i];
|
||
|
int const m2 = (maxsf1 + 7) >> 3;
|
||
|
sbg[i] = Max(m1, m2);
|
||
|
}
|
||
|
if (sbg[i] > 0 && mingain_s[i] > (cod_info->global_gain - sbg[i] * 8)) {
|
||
|
sbg[i] = (cod_info->global_gain - mingain_s[i]) >> 3;
|
||
|
}
|
||
|
if (sbg[i] > 7) {
|
||
|
sbg[i] = 7;
|
||
|
}
|
||
|
if (min_sbg > sbg[i]) {
|
||
|
min_sbg = sbg[i];
|
||
|
}
|
||
|
}
|
||
|
sbg0 = sbg[0] * 8;
|
||
|
sbg1 = sbg[1] * 8;
|
||
|
sbg2 = sbg[2] * 8;
|
||
|
for (sfb = 0; sfb < SFBMAX; sfb += 3) {
|
||
|
sf[sfb + 0] += sbg0;
|
||
|
sf[sfb + 1] += sbg1;
|
||
|
sf[sfb + 2] += sbg2;
|
||
|
}
|
||
|
if (min_sbg > 0) {
|
||
|
for (i = 0; i < 3; ++i) {
|
||
|
sbg[i] -= min_sbg;
|
||
|
}
|
||
|
cod_info->global_gain -= min_sbg * 8;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
ifqstep = ( cod_info->scalefac_scale == 0 ) ? 2 : 4;
|
||
|
ol_sf = (cod_info->global_gain-210.0);
|
||
|
ol_sf -= ifqstep*scalefac[gr][ch].l[sfb];
|
||
|
if (cod_info->preflag && sfb>=11)
|
||
|
ol_sf -= ifqstep*pretab[sfb];
|
||
|
*/
|
||
|
static void
|
||
|
set_scalefacs(gr_info * cod_info, const int *vbrsfmin, int sf[], const uint8_t * max_range)
|
||
|
{
|
||
|
const int ifqstep = (cod_info->scalefac_scale == 0) ? 2 : 4;
|
||
|
const int ifqstepShift = (cod_info->scalefac_scale == 0) ? 1 : 2;
|
||
|
int *const scalefac = cod_info->scalefac;
|
||
|
int const sfbmax = cod_info->sfbmax;
|
||
|
int sfb;
|
||
|
int const *const sbg = cod_info->subblock_gain;
|
||
|
int const *const window = cod_info->window;
|
||
|
int const preflag = cod_info->preflag;
|
||
|
|
||
|
if (preflag) {
|
||
|
for (sfb = 11; sfb < sfbmax; ++sfb) {
|
||
|
sf[sfb] += pretab[sfb] * ifqstep;
|
||
|
}
|
||
|
}
|
||
|
for (sfb = 0; sfb < sfbmax; ++sfb) {
|
||
|
int const gain = cod_info->global_gain - (sbg[window[sfb]] * 8)
|
||
|
- ((preflag ? pretab[sfb] : 0) * ifqstep);
|
||
|
|
||
|
if (sf[sfb] < 0) {
|
||
|
int const m = gain - vbrsfmin[sfb];
|
||
|
/* ifqstep*scalefac >= -sf[sfb], so round UP */
|
||
|
scalefac[sfb] = (ifqstep - 1 - sf[sfb]) >> ifqstepShift;
|
||
|
|
||
|
if (scalefac[sfb] > max_range[sfb]) {
|
||
|
scalefac[sfb] = max_range[sfb];
|
||
|
}
|
||
|
if (scalefac[sfb] > 0 && (scalefac[sfb] << ifqstepShift) > m) {
|
||
|
scalefac[sfb] = m >> ifqstepShift;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
scalefac[sfb] = 0;
|
||
|
}
|
||
|
}
|
||
|
for (; sfb < SFBMAX; ++sfb) {
|
||
|
scalefac[sfb] = 0; /* sfb21 */
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
static int
|
||
|
checkScalefactor(const gr_info * cod_info, const int vbrsfmin[SFBMAX])
|
||
|
{
|
||
|
int const ifqstep = cod_info->scalefac_scale == 0 ? 2 : 4;
|
||
|
int sfb;
|
||
|
for (sfb = 0; sfb < cod_info->psymax; ++sfb) {
|
||
|
const int s =
|
||
|
((cod_info->scalefac[sfb] +
|
||
|
(cod_info->preflag ? pretab[sfb] : 0)) * ifqstep) +
|
||
|
cod_info->subblock_gain[cod_info->window[sfb]] * 8;
|
||
|
|
||
|
if ((cod_info->global_gain - s) < vbrsfmin[sfb]) {
|
||
|
/*
|
||
|
fprintf( stdout, "sf %d\n", sfb );
|
||
|
fprintf( stdout, "min %d\n", vbrsfmin[sfb] );
|
||
|
fprintf( stdout, "ggain %d\n", cod_info->global_gain );
|
||
|
fprintf( stdout, "scalefac %d\n", cod_info->scalefac[sfb] );
|
||
|
fprintf( stdout, "pretab %d\n", (cod_info->preflag ? pretab[sfb] : 0) );
|
||
|
fprintf( stdout, "scale %d\n", (cod_info->scalefac_scale + 1) );
|
||
|
fprintf( stdout, "subgain %d\n", cod_info->subblock_gain[cod_info->window[sfb]] * 8 );
|
||
|
fflush( stdout );
|
||
|
exit(-1);
|
||
|
*/
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
/******************************************************************
|
||
|
*
|
||
|
* short block scalefacs
|
||
|
*
|
||
|
******************************************************************/
|
||
|
|
||
|
static void
|
||
|
short_block_constrain(const algo_t * that, const int vbrsf[SFBMAX],
|
||
|
const int vbrsfmin[SFBMAX], int vbrmax)
|
||
|
{
|
||
|
gr_info *const cod_info = that->cod_info;
|
||
|
lame_internal_flags const *const gfc = that->gfc;
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
int const maxminsfb = that->mingain_l;
|
||
|
int mover, maxover0 = 0, maxover1 = 0, delta = 0;
|
||
|
int v, v0, v1;
|
||
|
int sfb;
|
||
|
int const psymax = cod_info->psymax;
|
||
|
|
||
|
for (sfb = 0; sfb < psymax; ++sfb) {
|
||
|
assert(vbrsf[sfb] >= vbrsfmin[sfb]);
|
||
|
v = vbrmax - vbrsf[sfb];
|
||
|
if (delta < v) {
|
||
|
delta = v;
|
||
|
}
|
||
|
v0 = v - (4 * 14 + 2 * max_range_short[sfb]);
|
||
|
v1 = v - (4 * 14 + 4 * max_range_short[sfb]);
|
||
|
if (maxover0 < v0) {
|
||
|
maxover0 = v0;
|
||
|
}
|
||
|
if (maxover1 < v1) {
|
||
|
maxover1 = v1;
|
||
|
}
|
||
|
}
|
||
|
if (cfg->noise_shaping == 2) {
|
||
|
/* allow scalefac_scale=1 */
|
||
|
mover = Min(maxover0, maxover1);
|
||
|
}
|
||
|
else {
|
||
|
mover = maxover0;
|
||
|
}
|
||
|
if (delta > mover) {
|
||
|
delta = mover;
|
||
|
}
|
||
|
vbrmax -= delta;
|
||
|
maxover0 -= mover;
|
||
|
maxover1 -= mover;
|
||
|
|
||
|
if (maxover0 == 0) {
|
||
|
cod_info->scalefac_scale = 0;
|
||
|
}
|
||
|
else if (maxover1 == 0) {
|
||
|
cod_info->scalefac_scale = 1;
|
||
|
}
|
||
|
if (vbrmax < maxminsfb) {
|
||
|
vbrmax = maxminsfb;
|
||
|
}
|
||
|
cod_info->global_gain = vbrmax;
|
||
|
|
||
|
if (cod_info->global_gain < 0) {
|
||
|
cod_info->global_gain = 0;
|
||
|
}
|
||
|
else if (cod_info->global_gain > 255) {
|
||
|
cod_info->global_gain = 255;
|
||
|
}
|
||
|
{
|
||
|
int sf_temp[SFBMAX];
|
||
|
for (sfb = 0; sfb < SFBMAX; ++sfb) {
|
||
|
sf_temp[sfb] = vbrsf[sfb] - vbrmax;
|
||
|
}
|
||
|
set_subblock_gain(cod_info, &that->mingain_s[0], sf_temp);
|
||
|
set_scalefacs(cod_info, vbrsfmin, sf_temp, max_range_short);
|
||
|
}
|
||
|
assert(checkScalefactor(cod_info, vbrsfmin));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/******************************************************************
|
||
|
*
|
||
|
* long block scalefacs
|
||
|
*
|
||
|
******************************************************************/
|
||
|
|
||
|
static void
|
||
|
long_block_constrain(const algo_t * that, const int vbrsf[SFBMAX], const int vbrsfmin[SFBMAX],
|
||
|
int vbrmax)
|
||
|
{
|
||
|
gr_info *const cod_info = that->cod_info;
|
||
|
lame_internal_flags const *const gfc = that->gfc;
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
uint8_t const *max_rangep;
|
||
|
int const maxminsfb = that->mingain_l;
|
||
|
int sfb;
|
||
|
int maxover0, maxover1, maxover0p, maxover1p, mover, delta = 0;
|
||
|
int v, v0, v1, v0p, v1p, vm0p = 1, vm1p = 1;
|
||
|
int const psymax = cod_info->psymax;
|
||
|
|
||
|
max_rangep = cfg->mode_gr == 2 ? max_range_long : max_range_long_lsf_pretab;
|
||
|
|
||
|
maxover0 = 0;
|
||
|
maxover1 = 0;
|
||
|
maxover0p = 0; /* pretab */
|
||
|
maxover1p = 0; /* pretab */
|
||
|
|
||
|
for (sfb = 0; sfb < psymax; ++sfb) {
|
||
|
assert(vbrsf[sfb] >= vbrsfmin[sfb]);
|
||
|
v = vbrmax - vbrsf[sfb];
|
||
|
if (delta < v) {
|
||
|
delta = v;
|
||
|
}
|
||
|
v0 = v - 2 * max_range_long[sfb];
|
||
|
v1 = v - 4 * max_range_long[sfb];
|
||
|
v0p = v - 2 * (max_rangep[sfb] + pretab[sfb]);
|
||
|
v1p = v - 4 * (max_rangep[sfb] + pretab[sfb]);
|
||
|
if (maxover0 < v0) {
|
||
|
maxover0 = v0;
|
||
|
}
|
||
|
if (maxover1 < v1) {
|
||
|
maxover1 = v1;
|
||
|
}
|
||
|
if (maxover0p < v0p) {
|
||
|
maxover0p = v0p;
|
||
|
}
|
||
|
if (maxover1p < v1p) {
|
||
|
maxover1p = v1p;
|
||
|
}
|
||
|
}
|
||
|
if (vm0p == 1) {
|
||
|
int gain = vbrmax - maxover0p;
|
||
|
if (gain < maxminsfb) {
|
||
|
gain = maxminsfb;
|
||
|
}
|
||
|
for (sfb = 0; sfb < psymax; ++sfb) {
|
||
|
int const a = (gain - vbrsfmin[sfb]) - 2 * pretab[sfb];
|
||
|
if (a <= 0) {
|
||
|
vm0p = 0;
|
||
|
vm1p = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (vm1p == 1) {
|
||
|
int gain = vbrmax - maxover1p;
|
||
|
if (gain < maxminsfb) {
|
||
|
gain = maxminsfb;
|
||
|
}
|
||
|
for (sfb = 0; sfb < psymax; ++sfb) {
|
||
|
int const b = (gain - vbrsfmin[sfb]) - 4 * pretab[sfb];
|
||
|
if (b <= 0) {
|
||
|
vm1p = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (vm0p == 0) {
|
||
|
maxover0p = maxover0;
|
||
|
}
|
||
|
if (vm1p == 0) {
|
||
|
maxover1p = maxover1;
|
||
|
}
|
||
|
if (cfg->noise_shaping != 2) {
|
||
|
maxover1 = maxover0;
|
||
|
maxover1p = maxover0p;
|
||
|
}
|
||
|
mover = Min(maxover0, maxover0p);
|
||
|
mover = Min(mover, maxover1);
|
||
|
mover = Min(mover, maxover1p);
|
||
|
|
||
|
if (delta > mover) {
|
||
|
delta = mover;
|
||
|
}
|
||
|
vbrmax -= delta;
|
||
|
if (vbrmax < maxminsfb) {
|
||
|
vbrmax = maxminsfb;
|
||
|
}
|
||
|
maxover0 -= mover;
|
||
|
maxover0p -= mover;
|
||
|
maxover1 -= mover;
|
||
|
maxover1p -= mover;
|
||
|
|
||
|
if (maxover0 == 0) {
|
||
|
cod_info->scalefac_scale = 0;
|
||
|
cod_info->preflag = 0;
|
||
|
max_rangep = max_range_long;
|
||
|
}
|
||
|
else if (maxover0p == 0) {
|
||
|
cod_info->scalefac_scale = 0;
|
||
|
cod_info->preflag = 1;
|
||
|
}
|
||
|
else if (maxover1 == 0) {
|
||
|
cod_info->scalefac_scale = 1;
|
||
|
cod_info->preflag = 0;
|
||
|
max_rangep = max_range_long;
|
||
|
}
|
||
|
else if (maxover1p == 0) {
|
||
|
cod_info->scalefac_scale = 1;
|
||
|
cod_info->preflag = 1;
|
||
|
}
|
||
|
else {
|
||
|
assert(0); /* this should not happen */
|
||
|
}
|
||
|
cod_info->global_gain = vbrmax;
|
||
|
if (cod_info->global_gain < 0) {
|
||
|
cod_info->global_gain = 0;
|
||
|
}
|
||
|
else if (cod_info->global_gain > 255) {
|
||
|
cod_info->global_gain = 255;
|
||
|
}
|
||
|
{
|
||
|
int sf_temp[SFBMAX];
|
||
|
for (sfb = 0; sfb < SFBMAX; ++sfb) {
|
||
|
sf_temp[sfb] = vbrsf[sfb] - vbrmax;
|
||
|
}
|
||
|
set_scalefacs(cod_info, vbrsfmin, sf_temp, max_rangep);
|
||
|
}
|
||
|
assert(checkScalefactor(cod_info, vbrsfmin));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static void
|
||
|
bitcount(const algo_t * that)
|
||
|
{
|
||
|
int rc = scale_bitcount(that->gfc, that->cod_info);
|
||
|
|
||
|
if (rc == 0) {
|
||
|
return;
|
||
|
}
|
||
|
/* this should not happen due to the way the scalefactors are selected */
|
||
|
ERRORF(that->gfc, "INTERNAL ERROR IN VBR NEW CODE (986), please send bug report\n");
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static int
|
||
|
quantizeAndCountBits(const algo_t * that)
|
||
|
{
|
||
|
quantize_x34(that);
|
||
|
that->cod_info->part2_3_length = noquant_count_bits(that->gfc, that->cod_info, 0);
|
||
|
return that->cod_info->part2_3_length;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
static int
|
||
|
tryGlobalStepsize(const algo_t * that, const int sfwork[SFBMAX],
|
||
|
const int vbrsfmin[SFBMAX], int delta)
|
||
|
{
|
||
|
FLOAT const xrpow_max = that->cod_info->xrpow_max;
|
||
|
int sftemp[SFBMAX], i, nbits;
|
||
|
int gain, vbrmax = 0;
|
||
|
for (i = 0; i < SFBMAX; ++i) {
|
||
|
gain = sfwork[i] + delta;
|
||
|
if (gain < vbrsfmin[i]) {
|
||
|
gain = vbrsfmin[i];
|
||
|
}
|
||
|
if (gain > 255) {
|
||
|
gain = 255;
|
||
|
}
|
||
|
if (vbrmax < gain) {
|
||
|
vbrmax = gain;
|
||
|
}
|
||
|
sftemp[i] = gain;
|
||
|
}
|
||
|
that->alloc(that, sftemp, vbrsfmin, vbrmax);
|
||
|
bitcount(that);
|
||
|
nbits = quantizeAndCountBits(that);
|
||
|
that->cod_info->xrpow_max = xrpow_max;
|
||
|
return nbits;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static void
|
||
|
searchGlobalStepsizeMax(const algo_t * that, const int sfwork[SFBMAX],
|
||
|
const int vbrsfmin[SFBMAX], int target)
|
||
|
{
|
||
|
gr_info const *const cod_info = that->cod_info;
|
||
|
const int gain = cod_info->global_gain;
|
||
|
int curr = gain;
|
||
|
int gain_ok = 1024;
|
||
|
int nbits = LARGE_BITS;
|
||
|
int l = gain, r = 512;
|
||
|
|
||
|
assert(gain >= 0);
|
||
|
while (l <= r) {
|
||
|
curr = (l + r) >> 1;
|
||
|
nbits = tryGlobalStepsize(that, sfwork, vbrsfmin, curr - gain);
|
||
|
if (nbits == 0 || (nbits + cod_info->part2_length) < target) {
|
||
|
r = curr - 1;
|
||
|
gain_ok = curr;
|
||
|
}
|
||
|
else {
|
||
|
l = curr + 1;
|
||
|
if (gain_ok == 1024) {
|
||
|
gain_ok = curr;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (gain_ok != curr) {
|
||
|
curr = gain_ok;
|
||
|
nbits = tryGlobalStepsize(that, sfwork, vbrsfmin, curr - gain);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static int
|
||
|
sfDepth(const int sfwork[SFBMAX])
|
||
|
{
|
||
|
int m = 0;
|
||
|
unsigned int i, j;
|
||
|
for (j = SFBMAX, i = 0; j > 0; --j, ++i) {
|
||
|
int const di = 255 - sfwork[i];
|
||
|
if (m < di) {
|
||
|
m = di;
|
||
|
}
|
||
|
assert(sfwork[i] >= 0);
|
||
|
assert(sfwork[i] <= 255);
|
||
|
}
|
||
|
assert(m >= 0);
|
||
|
assert(m <= 255);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
cutDistribution(const int sfwork[SFBMAX], int sf_out[SFBMAX], int cut)
|
||
|
{
|
||
|
unsigned int i, j;
|
||
|
for (j = SFBMAX, i = 0; j > 0; --j, ++i) {
|
||
|
int const x = sfwork[i];
|
||
|
sf_out[i] = x < cut ? x : cut;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static int
|
||
|
flattenDistribution(const int sfwork[SFBMAX], int sf_out[SFBMAX], int dm, int k, int p)
|
||
|
{
|
||
|
unsigned int i, j;
|
||
|
int x, sfmax = 0;
|
||
|
if (dm > 0) {
|
||
|
for (j = SFBMAX, i = 0; j > 0; --j, ++i) {
|
||
|
int const di = p - sfwork[i];
|
||
|
x = sfwork[i] + (k * di) / dm;
|
||
|
if (x < 0) {
|
||
|
x = 0;
|
||
|
}
|
||
|
else {
|
||
|
if (x > 255) {
|
||
|
x = 255;
|
||
|
}
|
||
|
}
|
||
|
sf_out[i] = x;
|
||
|
if (sfmax < x) {
|
||
|
sfmax = x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
for (j = SFBMAX, i = 0; j > 0u; --j, ++i) {
|
||
|
x = sfwork[i];
|
||
|
sf_out[i] = x;
|
||
|
if (sfmax < x) {
|
||
|
sfmax = x;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return sfmax;
|
||
|
}
|
||
|
|
||
|
|
||
|
static int
|
||
|
tryThatOne(algo_t const* that, const int sftemp[SFBMAX], const int vbrsfmin[SFBMAX], int vbrmax)
|
||
|
{
|
||
|
FLOAT const xrpow_max = that->cod_info->xrpow_max;
|
||
|
int nbits = LARGE_BITS;
|
||
|
that->alloc(that, sftemp, vbrsfmin, vbrmax);
|
||
|
bitcount(that);
|
||
|
nbits = quantizeAndCountBits(that);
|
||
|
nbits += that->cod_info->part2_length;
|
||
|
that->cod_info->xrpow_max = xrpow_max;
|
||
|
return nbits;
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
outOfBitsStrategy(algo_t const* that, const int sfwork[SFBMAX], const int vbrsfmin[SFBMAX], int target)
|
||
|
{
|
||
|
int wrk[SFBMAX];
|
||
|
int const dm = sfDepth(sfwork);
|
||
|
int const p = that->cod_info->global_gain;
|
||
|
int nbits;
|
||
|
|
||
|
/* PART 1 */
|
||
|
{
|
||
|
int bi = dm / 2;
|
||
|
int bi_ok = -1;
|
||
|
int bu = 0;
|
||
|
int bo = dm;
|
||
|
for (;;) {
|
||
|
int const sfmax = flattenDistribution(sfwork, wrk, dm, bi, p);
|
||
|
nbits = tryThatOne(that, wrk, vbrsfmin, sfmax);
|
||
|
if (nbits <= target) {
|
||
|
bi_ok = bi;
|
||
|
bo = bi - 1;
|
||
|
}
|
||
|
else {
|
||
|
bu = bi + 1;
|
||
|
}
|
||
|
if (bu <= bo) {
|
||
|
bi = (bu + bo) / 2;
|
||
|
}
|
||
|
else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (bi_ok >= 0) {
|
||
|
if (bi != bi_ok) {
|
||
|
int const sfmax = flattenDistribution(sfwork, wrk, dm, bi_ok, p);
|
||
|
nbits = tryThatOne(that, wrk, vbrsfmin, sfmax);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* PART 2: */
|
||
|
{
|
||
|
int bi = (255 + p) / 2;
|
||
|
int bi_ok = -1;
|
||
|
int bu = p;
|
||
|
int bo = 255;
|
||
|
for (;;) {
|
||
|
int const sfmax = flattenDistribution(sfwork, wrk, dm, dm, bi);
|
||
|
nbits = tryThatOne(that, wrk, vbrsfmin, sfmax);
|
||
|
if (nbits <= target) {
|
||
|
bi_ok = bi;
|
||
|
bo = bi - 1;
|
||
|
}
|
||
|
else {
|
||
|
bu = bi + 1;
|
||
|
}
|
||
|
if (bu <= bo) {
|
||
|
bi = (bu + bo) / 2;
|
||
|
}
|
||
|
else {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (bi_ok >= 0) {
|
||
|
if (bi != bi_ok) {
|
||
|
int const sfmax = flattenDistribution(sfwork, wrk, dm, dm, bi_ok);
|
||
|
nbits = tryThatOne(that, wrk, vbrsfmin, sfmax);
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* fall back to old code, likely to be never called */
|
||
|
searchGlobalStepsizeMax(that, wrk, vbrsfmin, target);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int
|
||
|
reduce_bit_usage(lame_internal_flags * gfc, int gr, int ch
|
||
|
#if 0
|
||
|
, const FLOAT xr34orig[576], const FLOAT l3_xmin[SFBMAX], int maxbits
|
||
|
#endif
|
||
|
)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
gr_info *const cod_info = &gfc->l3_side.tt[gr][ch];
|
||
|
/* try some better scalefac storage
|
||
|
*/
|
||
|
best_scalefac_store(gfc, gr, ch, &gfc->l3_side);
|
||
|
|
||
|
/* best huffman_divide may save some bits too
|
||
|
*/
|
||
|
if (cfg->use_best_huffman == 1)
|
||
|
best_huffman_divide(gfc, cod_info);
|
||
|
return cod_info->part2_3_length + cod_info->part2_length;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
int
|
||
|
VBR_encode_frame(lame_internal_flags * gfc, const FLOAT xr34orig[2][2][576],
|
||
|
const FLOAT l3_xmin[2][2][SFBMAX], const int max_bits[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
int sfwork_[2][2][SFBMAX];
|
||
|
int vbrsfmin_[2][2][SFBMAX];
|
||
|
algo_t that_[2][2];
|
||
|
int const ngr = cfg->mode_gr;
|
||
|
int const nch = cfg->channels_out;
|
||
|
int max_nbits_ch[2][2] = {{0, 0}, {0 ,0}};
|
||
|
int max_nbits_gr[2] = {0, 0};
|
||
|
int max_nbits_fr = 0;
|
||
|
int use_nbits_ch[2][2] = {{MAX_BITS_PER_CHANNEL+1, MAX_BITS_PER_CHANNEL+1}
|
||
|
,{MAX_BITS_PER_CHANNEL+1, MAX_BITS_PER_CHANNEL+1}};
|
||
|
int use_nbits_gr[2] = { MAX_BITS_PER_GRANULE+1, MAX_BITS_PER_GRANULE+1 };
|
||
|
int use_nbits_fr = MAX_BITS_PER_GRANULE+MAX_BITS_PER_GRANULE;
|
||
|
int gr, ch;
|
||
|
int ok, sum_fr;
|
||
|
|
||
|
/* set up some encoding parameters
|
||
|
*/
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
max_nbits_gr[gr] = 0;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
max_nbits_ch[gr][ch] = max_bits[gr][ch];
|
||
|
use_nbits_ch[gr][ch] = 0;
|
||
|
max_nbits_gr[gr] += max_bits[gr][ch];
|
||
|
max_nbits_fr += max_bits[gr][ch];
|
||
|
that_[gr][ch].find = (cfg->full_outer_loop < 0) ? guess_scalefac_x34 : find_scalefac_x34;
|
||
|
that_[gr][ch].gfc = gfc;
|
||
|
that_[gr][ch].cod_info = &gfc->l3_side.tt[gr][ch];
|
||
|
that_[gr][ch].xr34orig = xr34orig[gr][ch];
|
||
|
if (that_[gr][ch].cod_info->block_type == SHORT_TYPE) {
|
||
|
that_[gr][ch].alloc = short_block_constrain;
|
||
|
}
|
||
|
else {
|
||
|
that_[gr][ch].alloc = long_block_constrain;
|
||
|
}
|
||
|
} /* for ch */
|
||
|
}
|
||
|
/* searches scalefactors
|
||
|
*/
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (max_bits[gr][ch] > 0) {
|
||
|
algo_t *that = &that_[gr][ch];
|
||
|
int *sfwork = sfwork_[gr][ch];
|
||
|
int *vbrsfmin = vbrsfmin_[gr][ch];
|
||
|
int vbrmax;
|
||
|
|
||
|
vbrmax = block_sf(that, l3_xmin[gr][ch], sfwork, vbrsfmin);
|
||
|
that->alloc(that, sfwork, vbrsfmin, vbrmax);
|
||
|
bitcount(that);
|
||
|
}
|
||
|
else {
|
||
|
/* xr contains no energy
|
||
|
* l3_enc, our encoding data, will be quantized to zero
|
||
|
* continue with next channel
|
||
|
*/
|
||
|
}
|
||
|
} /* for ch */
|
||
|
}
|
||
|
/* encode 'as is'
|
||
|
*/
|
||
|
use_nbits_fr = 0;
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
use_nbits_gr[gr] = 0;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
algo_t const *that = &that_[gr][ch];
|
||
|
if (max_bits[gr][ch] > 0) {
|
||
|
memset(&that->cod_info->l3_enc[0], 0, sizeof(that->cod_info->l3_enc));
|
||
|
(void) quantizeAndCountBits(that);
|
||
|
}
|
||
|
else {
|
||
|
/* xr contains no energy
|
||
|
* l3_enc, our encoding data, will be quantized to zero
|
||
|
* continue with next channel
|
||
|
*/
|
||
|
}
|
||
|
use_nbits_ch[gr][ch] = reduce_bit_usage(gfc, gr, ch);
|
||
|
use_nbits_gr[gr] += use_nbits_ch[gr][ch];
|
||
|
} /* for ch */
|
||
|
use_nbits_fr += use_nbits_gr[gr];
|
||
|
}
|
||
|
|
||
|
/* check bit constrains
|
||
|
*/
|
||
|
if (use_nbits_fr <= max_nbits_fr) {
|
||
|
ok = 1;
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
if (use_nbits_gr[gr] > MAX_BITS_PER_GRANULE) {
|
||
|
/* violates the rule that every granule has to use no more
|
||
|
* bits than MAX_BITS_PER_GRANULE
|
||
|
*/
|
||
|
ok = 0;
|
||
|
}
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (use_nbits_ch[gr][ch] > MAX_BITS_PER_CHANNEL) {
|
||
|
/* violates the rule that every gr_ch has to use no more
|
||
|
* bits than MAX_BITS_PER_CHANNEL
|
||
|
*
|
||
|
* This isn't explicitly stated in the ISO docs, but the
|
||
|
* part2_3_length field has only 12 bits, that makes it
|
||
|
* up to a maximum size of 4095 bits!!!
|
||
|
*/
|
||
|
ok = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (ok) {
|
||
|
return use_nbits_fr;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* OK, we are in trouble and have to define how many bits are
|
||
|
* to be used for each granule
|
||
|
*/
|
||
|
{
|
||
|
ok = 1;
|
||
|
sum_fr = 0;
|
||
|
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
max_nbits_gr[gr] = 0;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (use_nbits_ch[gr][ch] > MAX_BITS_PER_CHANNEL) {
|
||
|
max_nbits_ch[gr][ch] = MAX_BITS_PER_CHANNEL;
|
||
|
}
|
||
|
else {
|
||
|
max_nbits_ch[gr][ch] = use_nbits_ch[gr][ch];
|
||
|
}
|
||
|
max_nbits_gr[gr] += max_nbits_ch[gr][ch];
|
||
|
}
|
||
|
if (max_nbits_gr[gr] > MAX_BITS_PER_GRANULE) {
|
||
|
float f[2] = {0.0f, 0.0f}, s = 0.0f;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (max_nbits_ch[gr][ch] > 0) {
|
||
|
f[ch] = sqrt(sqrt(max_nbits_ch[gr][ch]));
|
||
|
s += f[ch];
|
||
|
}
|
||
|
else {
|
||
|
f[ch] = 0;
|
||
|
}
|
||
|
}
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (s > 0) {
|
||
|
max_nbits_ch[gr][ch] = MAX_BITS_PER_GRANULE * f[ch] / s;
|
||
|
}
|
||
|
else {
|
||
|
max_nbits_ch[gr][ch] = 0;
|
||
|
}
|
||
|
}
|
||
|
if (nch > 1) {
|
||
|
if (max_nbits_ch[gr][0] > use_nbits_ch[gr][0] + 32) {
|
||
|
max_nbits_ch[gr][1] += max_nbits_ch[gr][0];
|
||
|
max_nbits_ch[gr][1] -= use_nbits_ch[gr][0] + 32;
|
||
|
max_nbits_ch[gr][0] = use_nbits_ch[gr][0] + 32;
|
||
|
}
|
||
|
if (max_nbits_ch[gr][1] > use_nbits_ch[gr][1] + 32) {
|
||
|
max_nbits_ch[gr][0] += max_nbits_ch[gr][1];
|
||
|
max_nbits_ch[gr][0] -= use_nbits_ch[gr][1] + 32;
|
||
|
max_nbits_ch[gr][1] = use_nbits_ch[gr][1] + 32;
|
||
|
}
|
||
|
if (max_nbits_ch[gr][0] > MAX_BITS_PER_CHANNEL) {
|
||
|
max_nbits_ch[gr][0] = MAX_BITS_PER_CHANNEL;
|
||
|
}
|
||
|
if (max_nbits_ch[gr][1] > MAX_BITS_PER_CHANNEL) {
|
||
|
max_nbits_ch[gr][1] = MAX_BITS_PER_CHANNEL;
|
||
|
}
|
||
|
}
|
||
|
max_nbits_gr[gr] = 0;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
max_nbits_gr[gr] += max_nbits_ch[gr][ch];
|
||
|
}
|
||
|
}
|
||
|
sum_fr += max_nbits_gr[gr];
|
||
|
}
|
||
|
if (sum_fr > max_nbits_fr) {
|
||
|
{
|
||
|
float f[2] = {0.0f, 0.0f}, s = 0.0f;
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
if (max_nbits_gr[gr] > 0) {
|
||
|
f[gr] = sqrt(max_nbits_gr[gr]);
|
||
|
s += f[gr];
|
||
|
}
|
||
|
else {
|
||
|
f[gr] = 0;
|
||
|
}
|
||
|
}
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
if (s > 0) {
|
||
|
max_nbits_gr[gr] = max_nbits_fr * f[gr] / s;
|
||
|
}
|
||
|
else {
|
||
|
max_nbits_gr[gr] = 0;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
if (ngr > 1) {
|
||
|
if (max_nbits_gr[0] > use_nbits_gr[0] + 125) {
|
||
|
max_nbits_gr[1] += max_nbits_gr[0];
|
||
|
max_nbits_gr[1] -= use_nbits_gr[0] + 125;
|
||
|
max_nbits_gr[0] = use_nbits_gr[0] + 125;
|
||
|
}
|
||
|
if (max_nbits_gr[1] > use_nbits_gr[1] + 125) {
|
||
|
max_nbits_gr[0] += max_nbits_gr[1];
|
||
|
max_nbits_gr[0] -= use_nbits_gr[1] + 125;
|
||
|
max_nbits_gr[1] = use_nbits_gr[1] + 125;
|
||
|
}
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
if (max_nbits_gr[gr] > MAX_BITS_PER_GRANULE) {
|
||
|
max_nbits_gr[gr] = MAX_BITS_PER_GRANULE;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
float f[2] = {0.0f, 0.0f}, s = 0.0f;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (max_nbits_ch[gr][ch] > 0) {
|
||
|
f[ch] = sqrt(max_nbits_ch[gr][ch]);
|
||
|
s += f[ch];
|
||
|
}
|
||
|
else {
|
||
|
f[ch] = 0;
|
||
|
}
|
||
|
}
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (s > 0) {
|
||
|
max_nbits_ch[gr][ch] = max_nbits_gr[gr] * f[ch] / s;
|
||
|
}
|
||
|
else {
|
||
|
max_nbits_ch[gr][ch] = 0;
|
||
|
}
|
||
|
}
|
||
|
if (nch > 1) {
|
||
|
if (max_nbits_ch[gr][0] > use_nbits_ch[gr][0] + 32) {
|
||
|
max_nbits_ch[gr][1] += max_nbits_ch[gr][0];
|
||
|
max_nbits_ch[gr][1] -= use_nbits_ch[gr][0] + 32;
|
||
|
max_nbits_ch[gr][0] = use_nbits_ch[gr][0] + 32;
|
||
|
}
|
||
|
if (max_nbits_ch[gr][1] > use_nbits_ch[gr][1] + 32) {
|
||
|
max_nbits_ch[gr][0] += max_nbits_ch[gr][1];
|
||
|
max_nbits_ch[gr][0] -= use_nbits_ch[gr][1] + 32;
|
||
|
max_nbits_ch[gr][1] = use_nbits_ch[gr][1] + 32;
|
||
|
}
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
if (max_nbits_ch[gr][ch] > MAX_BITS_PER_CHANNEL) {
|
||
|
max_nbits_ch[gr][ch] = MAX_BITS_PER_CHANNEL;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* sanity check */
|
||
|
sum_fr = 0;
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
int sum_gr = 0;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
sum_gr += max_nbits_ch[gr][ch];
|
||
|
if (max_nbits_ch[gr][ch] > MAX_BITS_PER_CHANNEL) {
|
||
|
ok = 0;
|
||
|
}
|
||
|
}
|
||
|
sum_fr += sum_gr;
|
||
|
if (sum_gr > MAX_BITS_PER_GRANULE) {
|
||
|
ok = 0;
|
||
|
}
|
||
|
}
|
||
|
if (sum_fr > max_nbits_fr) {
|
||
|
ok = 0;
|
||
|
}
|
||
|
if (!ok) {
|
||
|
/* we must have done something wrong, fallback to 'on_pe' based constrain */
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
max_nbits_ch[gr][ch] = max_bits[gr][ch];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* we already called the 'best_scalefac_store' function, so we need to reset some
|
||
|
* variables before we can do it again.
|
||
|
*/
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
gfc->l3_side.scfsi[ch][0] = 0;
|
||
|
gfc->l3_side.scfsi[ch][1] = 0;
|
||
|
gfc->l3_side.scfsi[ch][2] = 0;
|
||
|
gfc->l3_side.scfsi[ch][3] = 0;
|
||
|
}
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
gfc->l3_side.tt[gr][ch].scalefac_compress = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* alter our encoded data, until it fits into the target bitrate
|
||
|
*/
|
||
|
use_nbits_fr = 0;
|
||
|
for (gr = 0; gr < ngr; ++gr) {
|
||
|
use_nbits_gr[gr] = 0;
|
||
|
for (ch = 0; ch < nch; ++ch) {
|
||
|
algo_t const *that = &that_[gr][ch];
|
||
|
use_nbits_ch[gr][ch] = 0;
|
||
|
if (max_bits[gr][ch] > 0) {
|
||
|
int *sfwork = sfwork_[gr][ch];
|
||
|
int const *vbrsfmin = vbrsfmin_[gr][ch];
|
||
|
cutDistribution(sfwork, sfwork, that->cod_info->global_gain);
|
||
|
outOfBitsStrategy(that, sfwork, vbrsfmin, max_nbits_ch[gr][ch]);
|
||
|
}
|
||
|
use_nbits_ch[gr][ch] = reduce_bit_usage(gfc, gr, ch);
|
||
|
assert(use_nbits_ch[gr][ch] <= max_nbits_ch[gr][ch]);
|
||
|
use_nbits_gr[gr] += use_nbits_ch[gr][ch];
|
||
|
} /* for ch */
|
||
|
use_nbits_fr += use_nbits_gr[gr];
|
||
|
}
|
||
|
|
||
|
/* check bit constrains, but it should always be ok, iff there are no bugs ;-)
|
||
|
*/
|
||
|
if (use_nbits_fr <= max_nbits_fr) {
|
||
|
return use_nbits_fr;
|
||
|
}
|
||
|
|
||
|
ERRORF(gfc, "INTERNAL ERROR IN VBR NEW CODE (1313), please send bug report\n"
|
||
|
"maxbits=%d usedbits=%d\n", max_nbits_fr, use_nbits_fr);
|
||
|
exit(-1);
|
||
|
}
|