2051 lines
64 KiB
C
2051 lines
64 KiB
C
|
/*
|
||
|
* MP3 quantization
|
||
|
*
|
||
|
* Copyright (c) 1999-2000 Mark Taylor
|
||
|
* Copyright (c) 1999-2003 Takehiro Tominaga
|
||
|
* Copyright (c) 2000-2011 Robert Hegemann
|
||
|
* Copyright (c) 2001-2005 Gabriel Bouvigne
|
||
|
*
|
||
|
* This library is free software; you can redistribute it and/or
|
||
|
* modify it under the terms of the GNU Library General Public
|
||
|
* License as published by the Free Software Foundation; either
|
||
|
* version 2 of the License, or (at your option) any later version.
|
||
|
*
|
||
|
* This library is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* Library General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU Library General Public
|
||
|
* License along with this library; if not, write to the
|
||
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
||
|
* Boston, MA 02111-1307, USA.
|
||
|
*/
|
||
|
|
||
|
/* $Id: quantize.c,v 1.219 2017/08/02 19:48:05 robert Exp $ */
|
||
|
|
||
|
#ifdef HAVE_CONFIG_H
|
||
|
# include <config.h>
|
||
|
#endif
|
||
|
|
||
|
#include "lame.h"
|
||
|
#include "machine.h"
|
||
|
#include "encoder.h"
|
||
|
#include "util.h"
|
||
|
#include "quantize_pvt.h"
|
||
|
#include "reservoir.h"
|
||
|
#include "bitstream.h"
|
||
|
#include "vbrquantize.h"
|
||
|
#include "quantize.h"
|
||
|
#ifdef HAVE_XMMINTRIN_H
|
||
|
#include "vector/lame_intrin.h"
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/* convert from L/R <-> Mid/Side */
|
||
|
static void
|
||
|
ms_convert(III_side_info_t * l3_side, int gr)
|
||
|
{
|
||
|
int i;
|
||
|
for (i = 0; i < 576; ++i) {
|
||
|
FLOAT l, r;
|
||
|
l = l3_side->tt[gr][0].xr[i];
|
||
|
r = l3_side->tt[gr][1].xr[i];
|
||
|
l3_side->tt[gr][0].xr[i] = (l + r) * (FLOAT) (SQRT2 * 0.5);
|
||
|
l3_side->tt[gr][1].xr[i] = (l - r) * (FLOAT) (SQRT2 * 0.5);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* init_outer_loop()
|
||
|
* mt 6/99
|
||
|
*
|
||
|
* initializes cod_info, scalefac and xrpow
|
||
|
*
|
||
|
* returns 0 if all energies in xr are zero, else 1
|
||
|
*
|
||
|
************************************************************************/
|
||
|
|
||
|
static void
|
||
|
init_xrpow_core_c(gr_info * const cod_info, FLOAT xrpow[576], int upper, FLOAT * sum)
|
||
|
{
|
||
|
int i;
|
||
|
FLOAT tmp;
|
||
|
*sum = 0;
|
||
|
for (i = 0; i <= upper; ++i) {
|
||
|
tmp = fabs(cod_info->xr[i]);
|
||
|
*sum += tmp;
|
||
|
xrpow[i] = sqrt(tmp * sqrt(tmp));
|
||
|
|
||
|
if (xrpow[i] > cod_info->xrpow_max)
|
||
|
cod_info->xrpow_max = xrpow[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
void
|
||
|
init_xrpow_core_init(lame_internal_flags * const gfc)
|
||
|
{
|
||
|
gfc->init_xrpow_core = init_xrpow_core_c;
|
||
|
|
||
|
#if defined(HAVE_XMMINTRIN_H)
|
||
|
if (gfc->CPU_features.SSE)
|
||
|
gfc->init_xrpow_core = init_xrpow_core_sse;
|
||
|
#endif
|
||
|
#ifndef HAVE_NASM
|
||
|
#ifdef MIN_ARCH_SSE
|
||
|
gfc->init_xrpow_core = init_xrpow_core_sse;
|
||
|
#endif
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static int
|
||
|
init_xrpow(lame_internal_flags * gfc, gr_info * const cod_info, FLOAT xrpow[576])
|
||
|
{
|
||
|
FLOAT sum = 0;
|
||
|
int i;
|
||
|
int const upper = cod_info->max_nonzero_coeff;
|
||
|
|
||
|
assert(xrpow != NULL);
|
||
|
cod_info->xrpow_max = 0;
|
||
|
|
||
|
/* check if there is some energy we have to quantize
|
||
|
* and calculate xrpow matching our fresh scalefactors
|
||
|
*/
|
||
|
assert(0 <= upper && upper <= 575);
|
||
|
memset(&(xrpow[upper]), 0, (576 - upper) * sizeof(xrpow[0]));
|
||
|
|
||
|
|
||
|
gfc->init_xrpow_core(cod_info, xrpow, upper, &sum);
|
||
|
|
||
|
/* return 1 if we have something to quantize, else 0
|
||
|
*/
|
||
|
if (sum > (FLOAT) 1E-20) {
|
||
|
int j = 0;
|
||
|
if (gfc->sv_qnt.substep_shaping & 2)
|
||
|
j = 1;
|
||
|
|
||
|
for (i = 0; i < cod_info->psymax; i++)
|
||
|
gfc->sv_qnt.pseudohalf[i] = j;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
memset(&cod_info->l3_enc[0], 0, sizeof(int) * 576);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
Gabriel Bouvigne feb/apr 2003
|
||
|
Analog silence detection in partitionned sfb21
|
||
|
or sfb12 for short blocks
|
||
|
|
||
|
From top to bottom of sfb, changes to 0
|
||
|
coeffs which are below ath. It stops on the first
|
||
|
coeff higher than ath.
|
||
|
*/
|
||
|
static void
|
||
|
psfb21_analogsilence(lame_internal_flags const *gfc, gr_info * const cod_info)
|
||
|
{
|
||
|
ATH_t const *const ATH = gfc->ATH;
|
||
|
FLOAT *const xr = cod_info->xr;
|
||
|
|
||
|
if (cod_info->block_type != SHORT_TYPE) { /* NORM, START or STOP type, but not SHORT blocks */
|
||
|
int gsfb;
|
||
|
int stop = 0;
|
||
|
for (gsfb = PSFB21 - 1; gsfb >= 0 && !stop; gsfb--) {
|
||
|
int const start = gfc->scalefac_band.psfb21[gsfb];
|
||
|
int const end = gfc->scalefac_band.psfb21[gsfb + 1];
|
||
|
int j;
|
||
|
FLOAT ath21;
|
||
|
ath21 = athAdjust(ATH->adjust_factor, ATH->psfb21[gsfb], ATH->floor, 0);
|
||
|
|
||
|
if (gfc->sv_qnt.longfact[21] > 1e-12f)
|
||
|
ath21 *= gfc->sv_qnt.longfact[21];
|
||
|
|
||
|
for (j = end - 1; j >= start; j--) {
|
||
|
if (fabs(xr[j]) < ath21)
|
||
|
xr[j] = 0;
|
||
|
else {
|
||
|
stop = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/*note: short blocks coeffs are reordered */
|
||
|
int block;
|
||
|
for (block = 0; block < 3; block++) {
|
||
|
|
||
|
int gsfb;
|
||
|
int stop = 0;
|
||
|
for (gsfb = PSFB12 - 1; gsfb >= 0 && !stop; gsfb--) {
|
||
|
int const start = gfc->scalefac_band.s[12] * 3 +
|
||
|
(gfc->scalefac_band.s[13] - gfc->scalefac_band.s[12]) * block +
|
||
|
(gfc->scalefac_band.psfb12[gsfb] - gfc->scalefac_band.psfb12[0]);
|
||
|
int const end =
|
||
|
start + (gfc->scalefac_band.psfb12[gsfb + 1] - gfc->scalefac_band.psfb12[gsfb]);
|
||
|
int j;
|
||
|
FLOAT ath12;
|
||
|
ath12 = athAdjust(ATH->adjust_factor, ATH->psfb12[gsfb], ATH->floor, 0);
|
||
|
|
||
|
if (gfc->sv_qnt.shortfact[12] > 1e-12f)
|
||
|
ath12 *= gfc->sv_qnt.shortfact[12];
|
||
|
|
||
|
for (j = end - 1; j >= start; j--) {
|
||
|
if (fabs(xr[j]) < ath12)
|
||
|
xr[j] = 0;
|
||
|
else {
|
||
|
stop = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
static void
|
||
|
init_outer_loop(lame_internal_flags const *gfc, gr_info * const cod_info)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
int sfb, j;
|
||
|
/* initialize fresh cod_info
|
||
|
*/
|
||
|
cod_info->part2_3_length = 0;
|
||
|
cod_info->big_values = 0;
|
||
|
cod_info->count1 = 0;
|
||
|
cod_info->global_gain = 210;
|
||
|
cod_info->scalefac_compress = 0;
|
||
|
/* mixed_block_flag, block_type was set in psymodel.c */
|
||
|
cod_info->table_select[0] = 0;
|
||
|
cod_info->table_select[1] = 0;
|
||
|
cod_info->table_select[2] = 0;
|
||
|
cod_info->subblock_gain[0] = 0;
|
||
|
cod_info->subblock_gain[1] = 0;
|
||
|
cod_info->subblock_gain[2] = 0;
|
||
|
cod_info->subblock_gain[3] = 0; /* this one is always 0 */
|
||
|
cod_info->region0_count = 0;
|
||
|
cod_info->region1_count = 0;
|
||
|
cod_info->preflag = 0;
|
||
|
cod_info->scalefac_scale = 0;
|
||
|
cod_info->count1table_select = 0;
|
||
|
cod_info->part2_length = 0;
|
||
|
if (cfg->samplerate_out <= 8000) {
|
||
|
cod_info->sfb_lmax = 17;
|
||
|
cod_info->sfb_smin = 9;
|
||
|
cod_info->psy_lmax = 17;
|
||
|
}
|
||
|
else {
|
||
|
cod_info->sfb_lmax = SBPSY_l;
|
||
|
cod_info->sfb_smin = SBPSY_s;
|
||
|
cod_info->psy_lmax = gfc->sv_qnt.sfb21_extra ? SBMAX_l : SBPSY_l;
|
||
|
}
|
||
|
cod_info->psymax = cod_info->psy_lmax;
|
||
|
cod_info->sfbmax = cod_info->sfb_lmax;
|
||
|
cod_info->sfbdivide = 11;
|
||
|
for (sfb = 0; sfb < SBMAX_l; sfb++) {
|
||
|
cod_info->width[sfb]
|
||
|
= gfc->scalefac_band.l[sfb + 1] - gfc->scalefac_band.l[sfb];
|
||
|
cod_info->window[sfb] = 3; /* which is always 0. */
|
||
|
}
|
||
|
if (cod_info->block_type == SHORT_TYPE) {
|
||
|
FLOAT ixwork[576];
|
||
|
FLOAT *ix;
|
||
|
|
||
|
cod_info->sfb_smin = 0;
|
||
|
cod_info->sfb_lmax = 0;
|
||
|
if (cod_info->mixed_block_flag) {
|
||
|
/*
|
||
|
* MPEG-1: sfbs 0-7 long block, 3-12 short blocks
|
||
|
* MPEG-2(.5): sfbs 0-5 long block, 3-12 short blocks
|
||
|
*/
|
||
|
cod_info->sfb_smin = 3;
|
||
|
cod_info->sfb_lmax = cfg->mode_gr * 2 + 4;
|
||
|
}
|
||
|
if (cfg->samplerate_out <= 8000) {
|
||
|
cod_info->psymax
|
||
|
= cod_info->sfb_lmax
|
||
|
+ 3 * (9 - cod_info->sfb_smin);
|
||
|
cod_info->sfbmax = cod_info->sfb_lmax + 3 * (9 - cod_info->sfb_smin);
|
||
|
}
|
||
|
else {
|
||
|
cod_info->psymax
|
||
|
= cod_info->sfb_lmax
|
||
|
+ 3 * ((gfc->sv_qnt.sfb21_extra ? SBMAX_s : SBPSY_s) - cod_info->sfb_smin);
|
||
|
cod_info->sfbmax = cod_info->sfb_lmax + 3 * (SBPSY_s - cod_info->sfb_smin);
|
||
|
}
|
||
|
cod_info->sfbdivide = cod_info->sfbmax - 18;
|
||
|
cod_info->psy_lmax = cod_info->sfb_lmax;
|
||
|
/* re-order the short blocks, for more efficient encoding below */
|
||
|
/* By Takehiro TOMINAGA */
|
||
|
/*
|
||
|
Within each scalefactor band, data is given for successive
|
||
|
time windows, beginning with window 0 and ending with window 2.
|
||
|
Within each window, the quantized values are then arranged in
|
||
|
order of increasing frequency...
|
||
|
*/
|
||
|
ix = &cod_info->xr[gfc->scalefac_band.l[cod_info->sfb_lmax]];
|
||
|
memcpy(ixwork, cod_info->xr, 576 * sizeof(FLOAT));
|
||
|
for (sfb = cod_info->sfb_smin; sfb < SBMAX_s; sfb++) {
|
||
|
int const start = gfc->scalefac_band.s[sfb];
|
||
|
int const end = gfc->scalefac_band.s[sfb + 1];
|
||
|
int window, l;
|
||
|
for (window = 0; window < 3; window++) {
|
||
|
for (l = start; l < end; l++) {
|
||
|
*ix++ = ixwork[3 * l + window];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
j = cod_info->sfb_lmax;
|
||
|
for (sfb = cod_info->sfb_smin; sfb < SBMAX_s; sfb++) {
|
||
|
cod_info->width[j] = cod_info->width[j + 1] = cod_info->width[j + 2]
|
||
|
= gfc->scalefac_band.s[sfb + 1] - gfc->scalefac_band.s[sfb];
|
||
|
cod_info->window[j] = 0;
|
||
|
cod_info->window[j + 1] = 1;
|
||
|
cod_info->window[j + 2] = 2;
|
||
|
j += 3;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cod_info->count1bits = 0;
|
||
|
cod_info->sfb_partition_table = nr_of_sfb_block[0][0];
|
||
|
cod_info->slen[0] = 0;
|
||
|
cod_info->slen[1] = 0;
|
||
|
cod_info->slen[2] = 0;
|
||
|
cod_info->slen[3] = 0;
|
||
|
|
||
|
cod_info->max_nonzero_coeff = 575;
|
||
|
|
||
|
/* fresh scalefactors are all zero
|
||
|
*/
|
||
|
memset(cod_info->scalefac, 0, sizeof(cod_info->scalefac));
|
||
|
|
||
|
if (cfg->vbr != vbr_mt && cfg->vbr != vbr_mtrh && cfg->vbr != vbr_abr && cfg->vbr != vbr_off) {
|
||
|
psfb21_analogsilence(gfc, cod_info);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* bin_search_StepSize()
|
||
|
*
|
||
|
* author/date??
|
||
|
*
|
||
|
* binary step size search
|
||
|
* used by outer_loop to get a quantizer step size to start with
|
||
|
*
|
||
|
************************************************************************/
|
||
|
|
||
|
typedef enum {
|
||
|
BINSEARCH_NONE,
|
||
|
BINSEARCH_UP,
|
||
|
BINSEARCH_DOWN
|
||
|
} binsearchDirection_t;
|
||
|
|
||
|
static int
|
||
|
bin_search_StepSize(lame_internal_flags * const gfc, gr_info * const cod_info,
|
||
|
int desired_rate, const int ch, const FLOAT xrpow[576])
|
||
|
{
|
||
|
int nBits;
|
||
|
int CurrentStep = gfc->sv_qnt.CurrentStep[ch];
|
||
|
int flag_GoneOver = 0;
|
||
|
int const start = gfc->sv_qnt.OldValue[ch];
|
||
|
binsearchDirection_t Direction = BINSEARCH_NONE;
|
||
|
cod_info->global_gain = start;
|
||
|
desired_rate -= cod_info->part2_length;
|
||
|
|
||
|
assert(CurrentStep);
|
||
|
for (;;) {
|
||
|
int step;
|
||
|
nBits = count_bits(gfc, xrpow, cod_info, 0);
|
||
|
|
||
|
if (CurrentStep == 1 || nBits == desired_rate)
|
||
|
break; /* nothing to adjust anymore */
|
||
|
|
||
|
if (nBits > desired_rate) {
|
||
|
/* increase Quantize_StepSize */
|
||
|
if (Direction == BINSEARCH_DOWN)
|
||
|
flag_GoneOver = 1;
|
||
|
|
||
|
if (flag_GoneOver)
|
||
|
CurrentStep /= 2;
|
||
|
Direction = BINSEARCH_UP;
|
||
|
step = CurrentStep;
|
||
|
}
|
||
|
else {
|
||
|
/* decrease Quantize_StepSize */
|
||
|
if (Direction == BINSEARCH_UP)
|
||
|
flag_GoneOver = 1;
|
||
|
|
||
|
if (flag_GoneOver)
|
||
|
CurrentStep /= 2;
|
||
|
Direction = BINSEARCH_DOWN;
|
||
|
step = -CurrentStep;
|
||
|
}
|
||
|
cod_info->global_gain += step;
|
||
|
if (cod_info->global_gain < 0) {
|
||
|
cod_info->global_gain = 0;
|
||
|
flag_GoneOver = 1;
|
||
|
}
|
||
|
if (cod_info->global_gain > 255) {
|
||
|
cod_info->global_gain = 255;
|
||
|
flag_GoneOver = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert(cod_info->global_gain >= 0);
|
||
|
assert(cod_info->global_gain < 256);
|
||
|
|
||
|
while (nBits > desired_rate && cod_info->global_gain < 255) {
|
||
|
cod_info->global_gain++;
|
||
|
nBits = count_bits(gfc, xrpow, cod_info, 0);
|
||
|
}
|
||
|
gfc->sv_qnt.CurrentStep[ch] = (start - cod_info->global_gain >= 4) ? 4 : 2;
|
||
|
gfc->sv_qnt.OldValue[ch] = cod_info->global_gain;
|
||
|
cod_info->part2_3_length = nBits;
|
||
|
return nBits;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* trancate_smallspectrums()
|
||
|
*
|
||
|
* Takehiro TOMINAGA 2002-07-21
|
||
|
*
|
||
|
* trancate smaller nubmers into 0 as long as the noise threshold is allowed.
|
||
|
*
|
||
|
************************************************************************/
|
||
|
static int
|
||
|
floatcompare(const void *v1, const void *v2)
|
||
|
{
|
||
|
const FLOAT *const a = v1, *const b = v2;
|
||
|
if (*a > *b)
|
||
|
return 1;
|
||
|
if (*a < *b)
|
||
|
return -1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
trancate_smallspectrums(lame_internal_flags const *gfc,
|
||
|
gr_info * const gi, const FLOAT * const l3_xmin, FLOAT * const work)
|
||
|
{
|
||
|
int sfb, j, width;
|
||
|
FLOAT distort[SFBMAX];
|
||
|
calc_noise_result dummy;
|
||
|
|
||
|
if ((!(gfc->sv_qnt.substep_shaping & 4) && gi->block_type == SHORT_TYPE)
|
||
|
|| gfc->sv_qnt.substep_shaping & 0x80)
|
||
|
return;
|
||
|
(void) calc_noise(gi, l3_xmin, distort, &dummy, 0);
|
||
|
for (j = 0; j < 576; j++) {
|
||
|
FLOAT xr = 0.0;
|
||
|
if (gi->l3_enc[j] != 0)
|
||
|
xr = fabs(gi->xr[j]);
|
||
|
work[j] = xr;
|
||
|
}
|
||
|
|
||
|
j = 0;
|
||
|
sfb = 8;
|
||
|
if (gi->block_type == SHORT_TYPE)
|
||
|
sfb = 6;
|
||
|
do {
|
||
|
FLOAT allowedNoise, trancateThreshold;
|
||
|
int nsame, start;
|
||
|
|
||
|
width = gi->width[sfb];
|
||
|
j += width;
|
||
|
if (distort[sfb] >= 1.0)
|
||
|
continue;
|
||
|
|
||
|
qsort(&work[j - width], width, sizeof(FLOAT), floatcompare);
|
||
|
if (EQ(work[j - 1], 0.0))
|
||
|
continue; /* all zero sfb */
|
||
|
|
||
|
allowedNoise = (1.0 - distort[sfb]) * l3_xmin[sfb];
|
||
|
trancateThreshold = 0.0;
|
||
|
start = 0;
|
||
|
do {
|
||
|
FLOAT noise;
|
||
|
for (nsame = 1; start + nsame < width; nsame++)
|
||
|
if (NEQ(work[start + j - width], work[start + j + nsame - width]))
|
||
|
break;
|
||
|
|
||
|
noise = work[start + j - width] * work[start + j - width] * nsame;
|
||
|
if (allowedNoise < noise) {
|
||
|
if (start != 0)
|
||
|
trancateThreshold = work[start + j - width - 1];
|
||
|
break;
|
||
|
}
|
||
|
allowedNoise -= noise;
|
||
|
start += nsame;
|
||
|
} while (start < width);
|
||
|
if (EQ(trancateThreshold, 0.0))
|
||
|
continue;
|
||
|
|
||
|
/* printf("%e %e %e\n", */
|
||
|
/* trancateThreshold/l3_xmin[sfb], */
|
||
|
/* trancateThreshold/(l3_xmin[sfb]*start), */
|
||
|
/* trancateThreshold/(l3_xmin[sfb]*(start+width)) */
|
||
|
/* ); */
|
||
|
/* if (trancateThreshold > 1000*l3_xmin[sfb]*start) */
|
||
|
/* trancateThreshold = 1000*l3_xmin[sfb]*start; */
|
||
|
|
||
|
do {
|
||
|
if (fabs(gi->xr[j - width]) <= trancateThreshold)
|
||
|
gi->l3_enc[j - width] = 0;
|
||
|
} while (--width > 0);
|
||
|
} while (++sfb < gi->psymax);
|
||
|
|
||
|
gi->part2_3_length = noquant_count_bits(gfc, gi, 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*************************************************************************
|
||
|
*
|
||
|
* loop_break()
|
||
|
*
|
||
|
* author/date??
|
||
|
*
|
||
|
* Function: Returns zero if there is a scalefac which has not been
|
||
|
* amplified. Otherwise it returns one.
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
inline static int
|
||
|
loop_break(const gr_info * const cod_info)
|
||
|
{
|
||
|
int sfb;
|
||
|
|
||
|
for (sfb = 0; sfb < cod_info->sfbmax; sfb++)
|
||
|
if (cod_info->scalefac[sfb]
|
||
|
+ cod_info->subblock_gain[cod_info->window[sfb]] == 0)
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/* mt 5/99: Function: Improved calc_noise for a single channel */
|
||
|
|
||
|
/*************************************************************************
|
||
|
*
|
||
|
* quant_compare()
|
||
|
*
|
||
|
* author/date??
|
||
|
*
|
||
|
* several different codes to decide which quantization is better
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
static double
|
||
|
penalties(double noise)
|
||
|
{
|
||
|
return FAST_LOG10(0.368 + 0.632 * noise * noise * noise);
|
||
|
}
|
||
|
|
||
|
static double
|
||
|
get_klemm_noise(const FLOAT * distort, const gr_info * const gi)
|
||
|
{
|
||
|
int sfb;
|
||
|
double klemm_noise = 1E-37;
|
||
|
for (sfb = 0; sfb < gi->psymax; sfb++)
|
||
|
klemm_noise += penalties(distort[sfb]);
|
||
|
|
||
|
return Max(1e-20, klemm_noise);
|
||
|
}
|
||
|
|
||
|
inline static int
|
||
|
quant_compare(const int quant_comp,
|
||
|
const calc_noise_result * const best,
|
||
|
calc_noise_result * const calc, const gr_info * const gi, const FLOAT * distort)
|
||
|
{
|
||
|
/*
|
||
|
noise is given in decibels (dB) relative to masking thesholds.
|
||
|
|
||
|
over_noise: ??? (the previous comment is fully wrong)
|
||
|
tot_noise: ??? (the previous comment is fully wrong)
|
||
|
max_noise: max quantization noise
|
||
|
|
||
|
*/
|
||
|
int better;
|
||
|
|
||
|
switch (quant_comp) {
|
||
|
default:
|
||
|
case 9:{
|
||
|
if (best->over_count > 0) {
|
||
|
/* there are distorted sfb */
|
||
|
better = calc->over_SSD <= best->over_SSD;
|
||
|
if (calc->over_SSD == best->over_SSD)
|
||
|
better = calc->bits < best->bits;
|
||
|
}
|
||
|
else {
|
||
|
/* no distorted sfb */
|
||
|
better = ((calc->max_noise < 0) &&
|
||
|
((calc->max_noise * 10 + calc->bits) <=
|
||
|
(best->max_noise * 10 + best->bits)));
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case 0:
|
||
|
better = calc->over_count < best->over_count
|
||
|
|| (calc->over_count == best->over_count && calc->over_noise < best->over_noise)
|
||
|
|| (calc->over_count == best->over_count &&
|
||
|
EQ(calc->over_noise, best->over_noise) && calc->tot_noise < best->tot_noise);
|
||
|
break;
|
||
|
|
||
|
case 8:
|
||
|
calc->max_noise = get_klemm_noise(distort, gi);
|
||
|
/*lint --fallthrough */
|
||
|
case 1:
|
||
|
better = calc->max_noise < best->max_noise;
|
||
|
break;
|
||
|
case 2:
|
||
|
better = calc->tot_noise < best->tot_noise;
|
||
|
break;
|
||
|
case 3:
|
||
|
better = (calc->tot_noise < best->tot_noise)
|
||
|
&& (calc->max_noise < best->max_noise);
|
||
|
break;
|
||
|
case 4:
|
||
|
better = (calc->max_noise <= 0.0 && best->max_noise > 0.2)
|
||
|
|| (calc->max_noise <= 0.0 &&
|
||
|
best->max_noise < 0.0 &&
|
||
|
best->max_noise > calc->max_noise - 0.2 && calc->tot_noise < best->tot_noise)
|
||
|
|| (calc->max_noise <= 0.0 &&
|
||
|
best->max_noise > 0.0 &&
|
||
|
best->max_noise > calc->max_noise - 0.2 &&
|
||
|
calc->tot_noise < best->tot_noise + best->over_noise)
|
||
|
|| (calc->max_noise > 0.0 &&
|
||
|
best->max_noise > -0.05 &&
|
||
|
best->max_noise > calc->max_noise - 0.1 &&
|
||
|
calc->tot_noise + calc->over_noise < best->tot_noise + best->over_noise)
|
||
|
|| (calc->max_noise > 0.0 &&
|
||
|
best->max_noise > -0.1 &&
|
||
|
best->max_noise > calc->max_noise - 0.15 &&
|
||
|
calc->tot_noise + calc->over_noise + calc->over_noise <
|
||
|
best->tot_noise + best->over_noise + best->over_noise);
|
||
|
break;
|
||
|
case 5:
|
||
|
better = calc->over_noise < best->over_noise
|
||
|
|| (EQ(calc->over_noise, best->over_noise) && calc->tot_noise < best->tot_noise);
|
||
|
break;
|
||
|
case 6:
|
||
|
better = calc->over_noise < best->over_noise
|
||
|
|| (EQ(calc->over_noise, best->over_noise) &&
|
||
|
(calc->max_noise < best->max_noise
|
||
|
|| (EQ(calc->max_noise, best->max_noise) && calc->tot_noise <= best->tot_noise)
|
||
|
));
|
||
|
break;
|
||
|
case 7:
|
||
|
better = calc->over_count < best->over_count || calc->over_noise < best->over_noise;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (best->over_count == 0) {
|
||
|
/*
|
||
|
If no distorted bands, only use this quantization
|
||
|
if it is better, and if it uses less bits.
|
||
|
Unfortunately, part2_3_length is sometimes a poor
|
||
|
estimator of the final size at low bitrates.
|
||
|
*/
|
||
|
better = better && calc->bits < best->bits;
|
||
|
}
|
||
|
|
||
|
|
||
|
return better;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*************************************************************************
|
||
|
*
|
||
|
* amp_scalefac_bands()
|
||
|
*
|
||
|
* author/date??
|
||
|
*
|
||
|
* Amplify the scalefactor bands that violate the masking threshold.
|
||
|
* See ISO 11172-3 Section C.1.5.4.3.5
|
||
|
*
|
||
|
* distort[] = noise/masking
|
||
|
* distort[] > 1 ==> noise is not masked
|
||
|
* distort[] < 1 ==> noise is masked
|
||
|
* max_dist = maximum value of distort[]
|
||
|
*
|
||
|
* Three algorithms:
|
||
|
* noise_shaping_amp
|
||
|
* 0 Amplify all bands with distort[]>1.
|
||
|
*
|
||
|
* 1 Amplify all bands with distort[] >= max_dist^(.5);
|
||
|
* ( 50% in the db scale)
|
||
|
*
|
||
|
* 2 Amplify first band with distort[] >= max_dist;
|
||
|
*
|
||
|
*
|
||
|
* For algorithms 0 and 1, if max_dist < 1, then amplify all bands
|
||
|
* with distort[] >= .95*max_dist. This is to make sure we always
|
||
|
* amplify at least one band.
|
||
|
*
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
static void
|
||
|
amp_scalefac_bands(lame_internal_flags * gfc,
|
||
|
gr_info * const cod_info, FLOAT const *distort, FLOAT xrpow[576], int bRefine)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
int j, sfb;
|
||
|
FLOAT ifqstep34, trigger;
|
||
|
int noise_shaping_amp;
|
||
|
|
||
|
if (cod_info->scalefac_scale == 0) {
|
||
|
ifqstep34 = 1.29683955465100964055; /* 2**(.75*.5) */
|
||
|
}
|
||
|
else {
|
||
|
ifqstep34 = 1.68179283050742922612; /* 2**(.75*1) */
|
||
|
}
|
||
|
|
||
|
/* compute maximum value of distort[] */
|
||
|
trigger = 0;
|
||
|
for (sfb = 0; sfb < cod_info->sfbmax; sfb++) {
|
||
|
if (trigger < distort[sfb])
|
||
|
trigger = distort[sfb];
|
||
|
}
|
||
|
|
||
|
noise_shaping_amp = cfg->noise_shaping_amp;
|
||
|
if (noise_shaping_amp == 3) {
|
||
|
if (bRefine == 1)
|
||
|
noise_shaping_amp = 2;
|
||
|
else
|
||
|
noise_shaping_amp = 1;
|
||
|
}
|
||
|
switch (noise_shaping_amp) {
|
||
|
case 2:
|
||
|
/* amplify exactly 1 band */
|
||
|
break;
|
||
|
|
||
|
case 1:
|
||
|
/* amplify bands within 50% of max (on db scale) */
|
||
|
if (trigger > 1.0)
|
||
|
trigger = pow(trigger, .5);
|
||
|
else
|
||
|
trigger *= .95;
|
||
|
break;
|
||
|
|
||
|
case 0:
|
||
|
default:
|
||
|
/* ISO algorithm. amplify all bands with distort>1 */
|
||
|
if (trigger > 1.0)
|
||
|
trigger = 1.0;
|
||
|
else
|
||
|
trigger *= .95;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
j = 0;
|
||
|
for (sfb = 0; sfb < cod_info->sfbmax; sfb++) {
|
||
|
int const width = cod_info->width[sfb];
|
||
|
int l;
|
||
|
j += width;
|
||
|
if (distort[sfb] < trigger)
|
||
|
continue;
|
||
|
|
||
|
if (gfc->sv_qnt.substep_shaping & 2) {
|
||
|
gfc->sv_qnt.pseudohalf[sfb] = !gfc->sv_qnt.pseudohalf[sfb];
|
||
|
if (!gfc->sv_qnt.pseudohalf[sfb] && cfg->noise_shaping_amp == 2)
|
||
|
return;
|
||
|
}
|
||
|
cod_info->scalefac[sfb]++;
|
||
|
for (l = -width; l < 0; l++) {
|
||
|
xrpow[j + l] *= ifqstep34;
|
||
|
if (xrpow[j + l] > cod_info->xrpow_max)
|
||
|
cod_info->xrpow_max = xrpow[j + l];
|
||
|
}
|
||
|
|
||
|
if (cfg->noise_shaping_amp == 2)
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*************************************************************************
|
||
|
*
|
||
|
* inc_scalefac_scale()
|
||
|
*
|
||
|
* Takehiro Tominaga 2000-xx-xx
|
||
|
*
|
||
|
* turns on scalefac scale and adjusts scalefactors
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
static void
|
||
|
inc_scalefac_scale(gr_info * const cod_info, FLOAT xrpow[576])
|
||
|
{
|
||
|
int l, j, sfb;
|
||
|
const FLOAT ifqstep34 = 1.29683955465100964055;
|
||
|
|
||
|
j = 0;
|
||
|
for (sfb = 0; sfb < cod_info->sfbmax; sfb++) {
|
||
|
int const width = cod_info->width[sfb];
|
||
|
int s = cod_info->scalefac[sfb];
|
||
|
if (cod_info->preflag)
|
||
|
s += pretab[sfb];
|
||
|
j += width;
|
||
|
if (s & 1) {
|
||
|
s++;
|
||
|
for (l = -width; l < 0; l++) {
|
||
|
xrpow[j + l] *= ifqstep34;
|
||
|
if (xrpow[j + l] > cod_info->xrpow_max)
|
||
|
cod_info->xrpow_max = xrpow[j + l];
|
||
|
}
|
||
|
}
|
||
|
cod_info->scalefac[sfb] = s >> 1;
|
||
|
}
|
||
|
cod_info->preflag = 0;
|
||
|
cod_info->scalefac_scale = 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*************************************************************************
|
||
|
*
|
||
|
* inc_subblock_gain()
|
||
|
*
|
||
|
* Takehiro Tominaga 2000-xx-xx
|
||
|
*
|
||
|
* increases the subblock gain and adjusts scalefactors
|
||
|
*
|
||
|
*************************************************************************/
|
||
|
|
||
|
static int
|
||
|
inc_subblock_gain(const lame_internal_flags * const gfc, gr_info * const cod_info, FLOAT xrpow[576])
|
||
|
{
|
||
|
int sfb, window;
|
||
|
int *const scalefac = cod_info->scalefac;
|
||
|
|
||
|
/* subbloc_gain can't do anything in the long block region */
|
||
|
for (sfb = 0; sfb < cod_info->sfb_lmax; sfb++) {
|
||
|
if (scalefac[sfb] >= 16)
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
for (window = 0; window < 3; window++) {
|
||
|
int s1, s2, l, j;
|
||
|
s1 = s2 = 0;
|
||
|
|
||
|
for (sfb = cod_info->sfb_lmax + window; sfb < cod_info->sfbdivide; sfb += 3) {
|
||
|
if (s1 < scalefac[sfb])
|
||
|
s1 = scalefac[sfb];
|
||
|
}
|
||
|
for (; sfb < cod_info->sfbmax; sfb += 3) {
|
||
|
if (s2 < scalefac[sfb])
|
||
|
s2 = scalefac[sfb];
|
||
|
}
|
||
|
|
||
|
if (s1 < 16 && s2 < 8)
|
||
|
continue;
|
||
|
|
||
|
if (cod_info->subblock_gain[window] >= 7)
|
||
|
return 1;
|
||
|
|
||
|
/* even though there is no scalefactor for sfb12
|
||
|
* subblock gain affects upper frequencies too, that's why
|
||
|
* we have to go up to SBMAX_s
|
||
|
*/
|
||
|
cod_info->subblock_gain[window]++;
|
||
|
j = gfc->scalefac_band.l[cod_info->sfb_lmax];
|
||
|
for (sfb = cod_info->sfb_lmax + window; sfb < cod_info->sfbmax; sfb += 3) {
|
||
|
FLOAT amp;
|
||
|
int const width = cod_info->width[sfb];
|
||
|
int s = scalefac[sfb];
|
||
|
assert(s >= 0);
|
||
|
s = s - (4 >> cod_info->scalefac_scale);
|
||
|
if (s >= 0) {
|
||
|
scalefac[sfb] = s;
|
||
|
j += width * 3;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
scalefac[sfb] = 0;
|
||
|
{
|
||
|
int const gain = 210 + (s << (cod_info->scalefac_scale + 1));
|
||
|
amp = IPOW20(gain);
|
||
|
}
|
||
|
j += width * (window + 1);
|
||
|
for (l = -width; l < 0; l++) {
|
||
|
xrpow[j + l] *= amp;
|
||
|
if (xrpow[j + l] > cod_info->xrpow_max)
|
||
|
cod_info->xrpow_max = xrpow[j + l];
|
||
|
}
|
||
|
j += width * (3 - window - 1);
|
||
|
}
|
||
|
|
||
|
{
|
||
|
FLOAT const amp = IPOW20(202);
|
||
|
j += cod_info->width[sfb] * (window + 1);
|
||
|
for (l = -cod_info->width[sfb]; l < 0; l++) {
|
||
|
xrpow[j + l] *= amp;
|
||
|
if (xrpow[j + l] > cod_info->xrpow_max)
|
||
|
cod_info->xrpow_max = xrpow[j + l];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/********************************************************************
|
||
|
*
|
||
|
* balance_noise()
|
||
|
*
|
||
|
* Takehiro Tominaga /date??
|
||
|
* Robert Hegemann 2000-09-06: made a function of it
|
||
|
*
|
||
|
* amplifies scalefactor bands,
|
||
|
* - if all are already amplified returns 0
|
||
|
* - if some bands are amplified too much:
|
||
|
* * try to increase scalefac_scale
|
||
|
* * if already scalefac_scale was set
|
||
|
* try on short blocks to increase subblock gain
|
||
|
*
|
||
|
********************************************************************/
|
||
|
inline static int
|
||
|
balance_noise(lame_internal_flags * gfc,
|
||
|
gr_info * const cod_info, FLOAT const *distort, FLOAT xrpow[576], int bRefine)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
int status;
|
||
|
|
||
|
amp_scalefac_bands(gfc, cod_info, distort, xrpow, bRefine);
|
||
|
|
||
|
/* check to make sure we have not amplified too much
|
||
|
* loop_break returns 0 if there is an unamplified scalefac
|
||
|
* scale_bitcount returns 0 if no scalefactors are too large
|
||
|
*/
|
||
|
|
||
|
status = loop_break(cod_info);
|
||
|
|
||
|
if (status)
|
||
|
return 0; /* all bands amplified */
|
||
|
|
||
|
/* not all scalefactors have been amplified. so these
|
||
|
* scalefacs are possibly valid. encode them:
|
||
|
*/
|
||
|
status = scale_bitcount(gfc, cod_info);
|
||
|
|
||
|
if (!status)
|
||
|
return 1; /* amplified some bands not exceeding limits */
|
||
|
|
||
|
/* some scalefactors are too large.
|
||
|
* lets try setting scalefac_scale=1
|
||
|
*/
|
||
|
if (cfg->noise_shaping > 1) {
|
||
|
memset(&gfc->sv_qnt.pseudohalf[0], 0, sizeof(gfc->sv_qnt.pseudohalf));
|
||
|
if (!cod_info->scalefac_scale) {
|
||
|
inc_scalefac_scale(cod_info, xrpow);
|
||
|
status = 0;
|
||
|
}
|
||
|
else {
|
||
|
if (cod_info->block_type == SHORT_TYPE && cfg->subblock_gain > 0) {
|
||
|
status = inc_subblock_gain(gfc, cod_info, xrpow)
|
||
|
|| loop_break(cod_info);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!status) {
|
||
|
status = scale_bitcount(gfc, cod_info);
|
||
|
}
|
||
|
return !status;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* outer_loop ()
|
||
|
*
|
||
|
* Function: The outer iteration loop controls the masking conditions
|
||
|
* of all scalefactorbands. It computes the best scalefac and
|
||
|
* global gain. This module calls the inner iteration loop
|
||
|
*
|
||
|
* mt 5/99 completely rewritten to allow for bit reservoir control,
|
||
|
* mid/side channels with L/R or mid/side masking thresholds,
|
||
|
* and chooses best quantization instead of last quantization when
|
||
|
* no distortion free quantization can be found.
|
||
|
*
|
||
|
* added VBR support mt 5/99
|
||
|
*
|
||
|
* some code shuffle rh 9/00
|
||
|
************************************************************************/
|
||
|
|
||
|
static int
|
||
|
outer_loop(lame_internal_flags * gfc, gr_info * const cod_info, const FLOAT * const l3_xmin, /* allowed distortion */
|
||
|
FLOAT xrpow[576], /* coloured magnitudes of spectral */
|
||
|
const int ch, const int targ_bits)
|
||
|
{ /* maximum allowed bits */
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
gr_info cod_info_w;
|
||
|
FLOAT save_xrpow[576];
|
||
|
FLOAT distort[SFBMAX];
|
||
|
calc_noise_result best_noise_info;
|
||
|
int huff_bits;
|
||
|
int better;
|
||
|
int age;
|
||
|
calc_noise_data prev_noise;
|
||
|
int best_part2_3_length = 9999999;
|
||
|
int bEndOfSearch = 0;
|
||
|
int bRefine = 0;
|
||
|
int best_ggain_pass1 = 0;
|
||
|
|
||
|
(void) bin_search_StepSize(gfc, cod_info, targ_bits, ch, xrpow);
|
||
|
|
||
|
if (!cfg->noise_shaping)
|
||
|
/* fast mode, no noise shaping, we are ready */
|
||
|
return 100; /* default noise_info.over_count */
|
||
|
|
||
|
memset(&prev_noise, 0, sizeof(calc_noise_data));
|
||
|
|
||
|
|
||
|
/* compute the distortion in this quantization */
|
||
|
/* coefficients and thresholds both l/r (or both mid/side) */
|
||
|
(void) calc_noise(cod_info, l3_xmin, distort, &best_noise_info, &prev_noise);
|
||
|
best_noise_info.bits = cod_info->part2_3_length;
|
||
|
|
||
|
cod_info_w = *cod_info;
|
||
|
age = 0;
|
||
|
/* if (cfg->vbr == vbr_rh || cfg->vbr == vbr_mtrh) */
|
||
|
memcpy(save_xrpow, xrpow, sizeof(FLOAT) * 576);
|
||
|
|
||
|
while (!bEndOfSearch) {
|
||
|
/* BEGIN MAIN LOOP */
|
||
|
do {
|
||
|
calc_noise_result noise_info;
|
||
|
int search_limit;
|
||
|
int maxggain = 255;
|
||
|
|
||
|
/* When quantization with no distorted bands is found,
|
||
|
* allow up to X new unsuccesful tries in serial. This
|
||
|
* gives us more possibilities for different quant_compare modes.
|
||
|
* Much more than 3 makes not a big difference, it is only slower.
|
||
|
*/
|
||
|
|
||
|
if (gfc->sv_qnt.substep_shaping & 2) {
|
||
|
search_limit = 20;
|
||
|
}
|
||
|
else {
|
||
|
search_limit = 3;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/* Check if the last scalefactor band is distorted.
|
||
|
* in VBR mode we can't get rid of the distortion, so quit now
|
||
|
* and VBR mode will try again with more bits.
|
||
|
* (makes a 10% speed increase, the files I tested were
|
||
|
* binary identical, 2000/05/20 Robert Hegemann)
|
||
|
* distort[] > 1 means noise > allowed noise
|
||
|
*/
|
||
|
if (gfc->sv_qnt.sfb21_extra) {
|
||
|
if (distort[cod_info_w.sfbmax] > 1.0)
|
||
|
break;
|
||
|
if (cod_info_w.block_type == SHORT_TYPE
|
||
|
&& (distort[cod_info_w.sfbmax + 1] > 1.0
|
||
|
|| distort[cod_info_w.sfbmax + 2] > 1.0))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* try a new scalefactor conbination on cod_info_w */
|
||
|
if (balance_noise(gfc, &cod_info_w, distort, xrpow, bRefine) == 0)
|
||
|
break;
|
||
|
if (cod_info_w.scalefac_scale)
|
||
|
maxggain = 254;
|
||
|
|
||
|
/* inner_loop starts with the initial quantization step computed above
|
||
|
* and slowly increases until the bits < huff_bits.
|
||
|
* Thus it is important not to start with too large of an inital
|
||
|
* quantization step. Too small is ok, but inner_loop will take longer
|
||
|
*/
|
||
|
huff_bits = targ_bits - cod_info_w.part2_length;
|
||
|
if (huff_bits <= 0)
|
||
|
break;
|
||
|
|
||
|
/* increase quantizer stepsize until needed bits are below maximum
|
||
|
*/
|
||
|
while ((cod_info_w.part2_3_length
|
||
|
= count_bits(gfc, xrpow, &cod_info_w, &prev_noise)) > huff_bits
|
||
|
&& cod_info_w.global_gain <= maxggain)
|
||
|
cod_info_w.global_gain++;
|
||
|
|
||
|
if (cod_info_w.global_gain > maxggain)
|
||
|
break;
|
||
|
|
||
|
if (best_noise_info.over_count == 0) {
|
||
|
|
||
|
while ((cod_info_w.part2_3_length
|
||
|
= count_bits(gfc, xrpow, &cod_info_w, &prev_noise)) > best_part2_3_length
|
||
|
&& cod_info_w.global_gain <= maxggain)
|
||
|
cod_info_w.global_gain++;
|
||
|
|
||
|
if (cod_info_w.global_gain > maxggain)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* compute the distortion in this quantization */
|
||
|
(void) calc_noise(&cod_info_w, l3_xmin, distort, &noise_info, &prev_noise);
|
||
|
noise_info.bits = cod_info_w.part2_3_length;
|
||
|
|
||
|
/* check if this quantization is better
|
||
|
* than our saved quantization */
|
||
|
if (cod_info->block_type != SHORT_TYPE) /* NORM, START or STOP type */
|
||
|
better = cfg->quant_comp;
|
||
|
else
|
||
|
better = cfg->quant_comp_short;
|
||
|
|
||
|
|
||
|
better = quant_compare(better, &best_noise_info, &noise_info, &cod_info_w, distort);
|
||
|
|
||
|
|
||
|
/* save data so we can restore this quantization later */
|
||
|
if (better) {
|
||
|
best_part2_3_length = cod_info->part2_3_length;
|
||
|
best_noise_info = noise_info;
|
||
|
*cod_info = cod_info_w;
|
||
|
age = 0;
|
||
|
/* save data so we can restore this quantization later */
|
||
|
/*if (cfg->vbr == vbr_rh || cfg->vbr == vbr_mtrh) */ {
|
||
|
/* store for later reuse */
|
||
|
memcpy(save_xrpow, xrpow, sizeof(FLOAT) * 576);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
/* early stop? */
|
||
|
if (cfg->full_outer_loop == 0) {
|
||
|
if (++age > search_limit && best_noise_info.over_count == 0)
|
||
|
break;
|
||
|
if ((cfg->noise_shaping_amp == 3) && bRefine && age > 30)
|
||
|
break;
|
||
|
if ((cfg->noise_shaping_amp == 3) && bRefine &&
|
||
|
(cod_info_w.global_gain - best_ggain_pass1) > 15)
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
while ((cod_info_w.global_gain + cod_info_w.scalefac_scale) < 255);
|
||
|
|
||
|
if (cfg->noise_shaping_amp == 3) {
|
||
|
if (!bRefine) {
|
||
|
/* refine search */
|
||
|
cod_info_w = *cod_info;
|
||
|
memcpy(xrpow, save_xrpow, sizeof(FLOAT) * 576);
|
||
|
age = 0;
|
||
|
best_ggain_pass1 = cod_info_w.global_gain;
|
||
|
|
||
|
bRefine = 1;
|
||
|
}
|
||
|
else {
|
||
|
/* search already refined, stop */
|
||
|
bEndOfSearch = 1;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
else {
|
||
|
bEndOfSearch = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
assert((cod_info->global_gain + cod_info->scalefac_scale) <= 255);
|
||
|
/* finish up
|
||
|
*/
|
||
|
if (cfg->vbr == vbr_rh || cfg->vbr == vbr_mtrh || cfg->vbr == vbr_mt)
|
||
|
/* restore for reuse on next try */
|
||
|
memcpy(xrpow, save_xrpow, sizeof(FLOAT) * 576);
|
||
|
/* do the 'substep shaping'
|
||
|
*/
|
||
|
else if (gfc->sv_qnt.substep_shaping & 1)
|
||
|
trancate_smallspectrums(gfc, cod_info, l3_xmin, xrpow);
|
||
|
|
||
|
return best_noise_info.over_count;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* iteration_finish_one()
|
||
|
*
|
||
|
* Robert Hegemann 2000-09-06
|
||
|
*
|
||
|
* update reservoir status after FINAL quantization/bitrate
|
||
|
*
|
||
|
************************************************************************/
|
||
|
|
||
|
static void
|
||
|
iteration_finish_one(lame_internal_flags * gfc, int gr, int ch)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
III_side_info_t *const l3_side = &gfc->l3_side;
|
||
|
gr_info *const cod_info = &l3_side->tt[gr][ch];
|
||
|
|
||
|
/* try some better scalefac storage
|
||
|
*/
|
||
|
best_scalefac_store(gfc, gr, ch, l3_side);
|
||
|
|
||
|
/* best huffman_divide may save some bits too
|
||
|
*/
|
||
|
if (cfg->use_best_huffman == 1)
|
||
|
best_huffman_divide(gfc, cod_info);
|
||
|
|
||
|
/* update reservoir status after FINAL quantization/bitrate
|
||
|
*/
|
||
|
ResvAdjust(gfc, cod_info);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*********************************************************************
|
||
|
*
|
||
|
* VBR_encode_granule()
|
||
|
*
|
||
|
* 2000-09-04 Robert Hegemann
|
||
|
*
|
||
|
*********************************************************************/
|
||
|
|
||
|
static void
|
||
|
VBR_encode_granule(lame_internal_flags * gfc, gr_info * const cod_info, const FLOAT * const l3_xmin, /* allowed distortion of the scalefactor */
|
||
|
FLOAT xrpow[576], /* coloured magnitudes of spectral values */
|
||
|
const int ch, int min_bits, int max_bits)
|
||
|
{
|
||
|
gr_info bst_cod_info;
|
||
|
FLOAT bst_xrpow[576];
|
||
|
int const Max_bits = max_bits;
|
||
|
int real_bits = max_bits + 1;
|
||
|
int this_bits = (max_bits + min_bits) / 2;
|
||
|
int dbits, over, found = 0;
|
||
|
int const sfb21_extra = gfc->sv_qnt.sfb21_extra;
|
||
|
|
||
|
assert(Max_bits <= MAX_BITS_PER_CHANNEL);
|
||
|
memset(bst_cod_info.l3_enc, 0, sizeof(bst_cod_info.l3_enc));
|
||
|
|
||
|
/* search within round about 40 bits of optimal
|
||
|
*/
|
||
|
do {
|
||
|
assert(this_bits >= min_bits);
|
||
|
assert(this_bits <= max_bits);
|
||
|
assert(min_bits <= max_bits);
|
||
|
|
||
|
if (this_bits > Max_bits - 42)
|
||
|
gfc->sv_qnt.sfb21_extra = 0;
|
||
|
else
|
||
|
gfc->sv_qnt.sfb21_extra = sfb21_extra;
|
||
|
|
||
|
over = outer_loop(gfc, cod_info, l3_xmin, xrpow, ch, this_bits);
|
||
|
|
||
|
/* is quantization as good as we are looking for ?
|
||
|
* in this case: is no scalefactor band distorted?
|
||
|
*/
|
||
|
if (over <= 0) {
|
||
|
found = 1;
|
||
|
/* now we know it can be done with "real_bits"
|
||
|
* and maybe we can skip some iterations
|
||
|
*/
|
||
|
real_bits = cod_info->part2_3_length;
|
||
|
|
||
|
/* store best quantization so far
|
||
|
*/
|
||
|
bst_cod_info = *cod_info;
|
||
|
memcpy(bst_xrpow, xrpow, sizeof(FLOAT) * 576);
|
||
|
|
||
|
/* try with fewer bits
|
||
|
*/
|
||
|
max_bits = real_bits - 32;
|
||
|
dbits = max_bits - min_bits;
|
||
|
this_bits = (max_bits + min_bits) / 2;
|
||
|
}
|
||
|
else {
|
||
|
/* try with more bits
|
||
|
*/
|
||
|
min_bits = this_bits + 32;
|
||
|
dbits = max_bits - min_bits;
|
||
|
this_bits = (max_bits + min_bits) / 2;
|
||
|
|
||
|
if (found) {
|
||
|
found = 2;
|
||
|
/* start again with best quantization so far
|
||
|
*/
|
||
|
*cod_info = bst_cod_info;
|
||
|
memcpy(xrpow, bst_xrpow, sizeof(FLOAT) * 576);
|
||
|
}
|
||
|
}
|
||
|
} while (dbits > 12);
|
||
|
|
||
|
gfc->sv_qnt.sfb21_extra = sfb21_extra;
|
||
|
|
||
|
/* found=0 => nothing found, use last one
|
||
|
* found=1 => we just found the best and left the loop
|
||
|
* found=2 => we restored a good one and have now l3_enc to restore too
|
||
|
*/
|
||
|
if (found == 2) {
|
||
|
memcpy(cod_info->l3_enc, bst_cod_info.l3_enc, sizeof(int) * 576);
|
||
|
}
|
||
|
assert(cod_info->part2_3_length <= Max_bits);
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* get_framebits()
|
||
|
*
|
||
|
* Robert Hegemann 2000-09-05
|
||
|
*
|
||
|
* calculates
|
||
|
* * how many bits are available for analog silent granules
|
||
|
* * how many bits to use for the lowest allowed bitrate
|
||
|
* * how many bits each bitrate would provide
|
||
|
*
|
||
|
************************************************************************/
|
||
|
|
||
|
static void
|
||
|
get_framebits(lame_internal_flags * gfc, int frameBits[15])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
int bitsPerFrame, i;
|
||
|
|
||
|
/* always use at least this many bits per granule per channel
|
||
|
* unless we detect analog silence, see below
|
||
|
*/
|
||
|
eov->bitrate_index = cfg->vbr_min_bitrate_index;
|
||
|
bitsPerFrame = getframebits(gfc);
|
||
|
|
||
|
/* bits for analog silence
|
||
|
*/
|
||
|
eov->bitrate_index = 1;
|
||
|
bitsPerFrame = getframebits(gfc);
|
||
|
|
||
|
for (i = 1; i <= cfg->vbr_max_bitrate_index; i++) {
|
||
|
eov->bitrate_index = i;
|
||
|
frameBits[i] = ResvFrameBegin(gfc, &bitsPerFrame);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*********************************************************************
|
||
|
*
|
||
|
* VBR_prepare()
|
||
|
*
|
||
|
* 2000-09-04 Robert Hegemann
|
||
|
*
|
||
|
* * converts LR to MS coding when necessary
|
||
|
* * calculates allowed/adjusted quantization noise amounts
|
||
|
* * detects analog silent frames
|
||
|
*
|
||
|
* some remarks:
|
||
|
* - lower masking depending on Quality setting
|
||
|
* - quality control together with adjusted ATH MDCT scaling
|
||
|
* on lower quality setting allocate more noise from
|
||
|
* ATH masking, and on higher quality setting allocate
|
||
|
* less noise from ATH masking.
|
||
|
* - experiments show that going more than 2dB over GPSYCHO's
|
||
|
* limits ends up in very annoying artefacts
|
||
|
*
|
||
|
*********************************************************************/
|
||
|
|
||
|
/* RH: this one needs to be overhauled sometime */
|
||
|
|
||
|
static int
|
||
|
VBR_old_prepare(lame_internal_flags * gfc,
|
||
|
const FLOAT pe[2][2], FLOAT const ms_ener_ratio[2],
|
||
|
const III_psy_ratio ratio[2][2],
|
||
|
FLOAT l3_xmin[2][2][SFBMAX],
|
||
|
int frameBits[16], int min_bits[2][2], int max_bits[2][2], int bands[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
|
||
|
FLOAT masking_lower_db, adjust = 0.0;
|
||
|
int gr, ch;
|
||
|
int analog_silence = 1;
|
||
|
int avg, mxb, bits = 0;
|
||
|
|
||
|
eov->bitrate_index = cfg->vbr_max_bitrate_index;
|
||
|
avg = ResvFrameBegin(gfc, &avg) / cfg->mode_gr;
|
||
|
|
||
|
get_framebits(gfc, frameBits);
|
||
|
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
mxb = on_pe(gfc, pe, max_bits[gr], avg, gr, 0);
|
||
|
if (gfc->ov_enc.mode_ext == MPG_MD_MS_LR) {
|
||
|
ms_convert(&gfc->l3_side, gr);
|
||
|
reduce_side(max_bits[gr], ms_ener_ratio[gr], avg, mxb);
|
||
|
}
|
||
|
for (ch = 0; ch < cfg->channels_out; ++ch) {
|
||
|
gr_info *const cod_info = &gfc->l3_side.tt[gr][ch];
|
||
|
|
||
|
if (cod_info->block_type != SHORT_TYPE) { /* NORM, START or STOP type */
|
||
|
adjust = 1.28 / (1 + exp(3.5 - pe[gr][ch] / 300.)) - 0.05;
|
||
|
masking_lower_db = gfc->sv_qnt.mask_adjust - adjust;
|
||
|
}
|
||
|
else {
|
||
|
adjust = 2.56 / (1 + exp(3.5 - pe[gr][ch] / 300.)) - 0.14;
|
||
|
masking_lower_db = gfc->sv_qnt.mask_adjust_short - adjust;
|
||
|
}
|
||
|
gfc->sv_qnt.masking_lower = pow(10.0, masking_lower_db * 0.1);
|
||
|
|
||
|
init_outer_loop(gfc, cod_info);
|
||
|
bands[gr][ch] = calc_xmin(gfc, &ratio[gr][ch], cod_info, l3_xmin[gr][ch]);
|
||
|
if (bands[gr][ch])
|
||
|
analog_silence = 0;
|
||
|
|
||
|
min_bits[gr][ch] = 126;
|
||
|
|
||
|
bits += max_bits[gr][ch];
|
||
|
}
|
||
|
}
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
if (bits > frameBits[cfg->vbr_max_bitrate_index] && bits > 0) {
|
||
|
max_bits[gr][ch] *= frameBits[cfg->vbr_max_bitrate_index];
|
||
|
max_bits[gr][ch] /= bits;
|
||
|
}
|
||
|
if (min_bits[gr][ch] > max_bits[gr][ch])
|
||
|
min_bits[gr][ch] = max_bits[gr][ch];
|
||
|
|
||
|
} /* for ch */
|
||
|
} /* for gr */
|
||
|
|
||
|
return analog_silence;
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
bitpressure_strategy(lame_internal_flags const *gfc,
|
||
|
FLOAT l3_xmin[2][2][SFBMAX], const int min_bits[2][2], int max_bits[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
int gr, ch, sfb;
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
gr_info const *const gi = &gfc->l3_side.tt[gr][ch];
|
||
|
FLOAT *pxmin = l3_xmin[gr][ch];
|
||
|
for (sfb = 0; sfb < gi->psy_lmax; sfb++)
|
||
|
*pxmin++ *= 1. + .029 * sfb * sfb / SBMAX_l / SBMAX_l;
|
||
|
|
||
|
if (gi->block_type == SHORT_TYPE) {
|
||
|
for (sfb = gi->sfb_smin; sfb < SBMAX_s; sfb++) {
|
||
|
*pxmin++ *= 1. + .029 * sfb * sfb / SBMAX_s / SBMAX_s;
|
||
|
*pxmin++ *= 1. + .029 * sfb * sfb / SBMAX_s / SBMAX_s;
|
||
|
*pxmin++ *= 1. + .029 * sfb * sfb / SBMAX_s / SBMAX_s;
|
||
|
}
|
||
|
}
|
||
|
max_bits[gr][ch] = Max(min_bits[gr][ch], 0.9 * max_bits[gr][ch]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* VBR_iteration_loop()
|
||
|
*
|
||
|
* tries to find out how many bits are needed for each granule and channel
|
||
|
* to get an acceptable quantization. An appropriate bitrate will then be
|
||
|
* choosed for quantization. rh 8/99
|
||
|
*
|
||
|
* Robert Hegemann 2000-09-06 rewrite
|
||
|
*
|
||
|
************************************************************************/
|
||
|
|
||
|
void
|
||
|
VBR_old_iteration_loop(lame_internal_flags * gfc, const FLOAT pe[2][2],
|
||
|
const FLOAT ms_ener_ratio[2], const III_psy_ratio ratio[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
FLOAT l3_xmin[2][2][SFBMAX];
|
||
|
|
||
|
FLOAT xrpow[576];
|
||
|
int bands[2][2];
|
||
|
int frameBits[15];
|
||
|
int used_bits;
|
||
|
int bits;
|
||
|
int min_bits[2][2], max_bits[2][2];
|
||
|
int mean_bits;
|
||
|
int ch, gr, analog_silence;
|
||
|
III_side_info_t *const l3_side = &gfc->l3_side;
|
||
|
|
||
|
analog_silence = VBR_old_prepare(gfc, pe, ms_ener_ratio, ratio,
|
||
|
l3_xmin, frameBits, min_bits, max_bits, bands);
|
||
|
|
||
|
/*---------------------------------*/
|
||
|
for (;;) {
|
||
|
|
||
|
/* quantize granules with lowest possible number of bits
|
||
|
*/
|
||
|
|
||
|
used_bits = 0;
|
||
|
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
int ret;
|
||
|
gr_info *const cod_info = &l3_side->tt[gr][ch];
|
||
|
|
||
|
/* init_outer_loop sets up cod_info, scalefac and xrpow
|
||
|
*/
|
||
|
ret = init_xrpow(gfc, cod_info, xrpow);
|
||
|
if (ret == 0 || max_bits[gr][ch] == 0) {
|
||
|
/* xr contains no energy
|
||
|
* l3_enc, our encoding data, will be quantized to zero
|
||
|
*/
|
||
|
continue; /* with next channel */
|
||
|
}
|
||
|
|
||
|
VBR_encode_granule(gfc, cod_info, l3_xmin[gr][ch], xrpow,
|
||
|
ch, min_bits[gr][ch], max_bits[gr][ch]);
|
||
|
|
||
|
/* do the 'substep shaping'
|
||
|
*/
|
||
|
if (gfc->sv_qnt.substep_shaping & 1) {
|
||
|
trancate_smallspectrums(gfc, &l3_side->tt[gr][ch], l3_xmin[gr][ch], xrpow);
|
||
|
}
|
||
|
|
||
|
ret = cod_info->part2_3_length + cod_info->part2_length;
|
||
|
used_bits += ret;
|
||
|
} /* for ch */
|
||
|
} /* for gr */
|
||
|
|
||
|
/* find lowest bitrate able to hold used bits
|
||
|
*/
|
||
|
if (analog_silence && !cfg->enforce_min_bitrate)
|
||
|
/* we detected analog silence and the user did not specify
|
||
|
* any hard framesize limit, so start with smallest possible frame
|
||
|
*/
|
||
|
eov->bitrate_index = 1;
|
||
|
else
|
||
|
eov->bitrate_index = cfg->vbr_min_bitrate_index;
|
||
|
|
||
|
for (; eov->bitrate_index < cfg->vbr_max_bitrate_index; eov->bitrate_index++) {
|
||
|
if (used_bits <= frameBits[eov->bitrate_index])
|
||
|
break;
|
||
|
}
|
||
|
bits = ResvFrameBegin(gfc, &mean_bits);
|
||
|
|
||
|
if (used_bits <= bits)
|
||
|
break;
|
||
|
|
||
|
bitpressure_strategy(gfc, l3_xmin, (const int (*)[2])min_bits, max_bits);
|
||
|
|
||
|
} /* breaks adjusted */
|
||
|
/*--------------------------------------*/
|
||
|
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
iteration_finish_one(gfc, gr, ch);
|
||
|
} /* for ch */
|
||
|
} /* for gr */
|
||
|
ResvFrameEnd(gfc, mean_bits);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static int
|
||
|
VBR_new_prepare(lame_internal_flags * gfc,
|
||
|
const FLOAT pe[2][2], const III_psy_ratio ratio[2][2],
|
||
|
FLOAT l3_xmin[2][2][SFBMAX], int frameBits[16], int max_bits[2][2],
|
||
|
int* max_resv)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
|
||
|
int gr, ch;
|
||
|
int analog_silence = 1;
|
||
|
int avg, bits = 0;
|
||
|
int maximum_framebits;
|
||
|
|
||
|
if (!cfg->free_format) {
|
||
|
eov->bitrate_index = cfg->vbr_max_bitrate_index;
|
||
|
(void) ResvFrameBegin(gfc, &avg);
|
||
|
*max_resv = gfc->sv_enc.ResvMax;
|
||
|
|
||
|
get_framebits(gfc, frameBits);
|
||
|
maximum_framebits = frameBits[cfg->vbr_max_bitrate_index];
|
||
|
}
|
||
|
else {
|
||
|
eov->bitrate_index = 0;
|
||
|
maximum_framebits = ResvFrameBegin(gfc, &avg);
|
||
|
frameBits[0] = maximum_framebits;
|
||
|
*max_resv = gfc->sv_enc.ResvMax;
|
||
|
}
|
||
|
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
(void) on_pe(gfc, pe, max_bits[gr], avg, gr, 0);
|
||
|
if (gfc->ov_enc.mode_ext == MPG_MD_MS_LR) {
|
||
|
ms_convert(&gfc->l3_side, gr);
|
||
|
}
|
||
|
for (ch = 0; ch < cfg->channels_out; ++ch) {
|
||
|
gr_info *const cod_info = &gfc->l3_side.tt[gr][ch];
|
||
|
|
||
|
gfc->sv_qnt.masking_lower = pow(10.0, gfc->sv_qnt.mask_adjust * 0.1);
|
||
|
|
||
|
init_outer_loop(gfc, cod_info);
|
||
|
if (0 != calc_xmin(gfc, &ratio[gr][ch], cod_info, l3_xmin[gr][ch]))
|
||
|
analog_silence = 0;
|
||
|
|
||
|
bits += max_bits[gr][ch];
|
||
|
}
|
||
|
}
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
if (bits > maximum_framebits && bits > 0) {
|
||
|
max_bits[gr][ch] *= maximum_framebits;
|
||
|
max_bits[gr][ch] /= bits;
|
||
|
}
|
||
|
|
||
|
} /* for ch */
|
||
|
} /* for gr */
|
||
|
if (analog_silence) {
|
||
|
*max_resv = 0;
|
||
|
}
|
||
|
return analog_silence;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void
|
||
|
VBR_new_iteration_loop(lame_internal_flags * gfc, const FLOAT pe[2][2],
|
||
|
const FLOAT ms_ener_ratio[2], const III_psy_ratio ratio[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
FLOAT l3_xmin[2][2][SFBMAX];
|
||
|
|
||
|
FLOAT xrpow[2][2][576];
|
||
|
int frameBits[15];
|
||
|
int used_bits;
|
||
|
int max_bits[2][2];
|
||
|
int ch, gr, analog_silence, pad;
|
||
|
III_side_info_t *const l3_side = &gfc->l3_side;
|
||
|
|
||
|
const FLOAT (*const_l3_xmin)[2][SFBMAX] = (const FLOAT (*)[2][SFBMAX])l3_xmin;
|
||
|
const FLOAT (*const_xrpow)[2][576] = (const FLOAT (*)[2][576])xrpow;
|
||
|
const int (*const_max_bits)[2] = (const int (*)[2])max_bits;
|
||
|
|
||
|
(void) ms_ener_ratio; /* not used */
|
||
|
|
||
|
memset(xrpow, 0, sizeof(xrpow));
|
||
|
|
||
|
analog_silence = VBR_new_prepare(gfc, pe, ratio, l3_xmin, frameBits, max_bits, &pad);
|
||
|
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
gr_info *const cod_info = &l3_side->tt[gr][ch];
|
||
|
|
||
|
/* init_outer_loop sets up cod_info, scalefac and xrpow
|
||
|
*/
|
||
|
if (0 == init_xrpow(gfc, cod_info, xrpow[gr][ch])) {
|
||
|
max_bits[gr][ch] = 0; /* silent granule needs no bits */
|
||
|
}
|
||
|
} /* for ch */
|
||
|
} /* for gr */
|
||
|
|
||
|
/* quantize granules with lowest possible number of bits
|
||
|
*/
|
||
|
|
||
|
used_bits = VBR_encode_frame(gfc, const_xrpow, const_l3_xmin, const_max_bits);
|
||
|
|
||
|
if (!cfg->free_format) {
|
||
|
int i, j;
|
||
|
|
||
|
/* find lowest bitrate able to hold used bits
|
||
|
*/
|
||
|
if (analog_silence && !cfg->enforce_min_bitrate) {
|
||
|
/* we detected analog silence and the user did not specify
|
||
|
* any hard framesize limit, so start with smallest possible frame
|
||
|
*/
|
||
|
i = 1;
|
||
|
}
|
||
|
else {
|
||
|
i = cfg->vbr_min_bitrate_index;
|
||
|
}
|
||
|
|
||
|
for (; i < cfg->vbr_max_bitrate_index; i++) {
|
||
|
if (used_bits <= frameBits[i])
|
||
|
break;
|
||
|
}
|
||
|
if (i > cfg->vbr_max_bitrate_index) {
|
||
|
i = cfg->vbr_max_bitrate_index;
|
||
|
}
|
||
|
if (pad > 0) {
|
||
|
for (j = cfg->vbr_max_bitrate_index; j > i; --j) {
|
||
|
int const unused = frameBits[j] - used_bits;
|
||
|
if (unused <= pad)
|
||
|
break;
|
||
|
}
|
||
|
eov->bitrate_index = j;
|
||
|
}
|
||
|
else {
|
||
|
eov->bitrate_index = i;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
#if 0
|
||
|
static int mmm = 0;
|
||
|
int fff = getFramesize_kbps(gfc, used_bits);
|
||
|
int hhh = getFramesize_kbps(gfc, MAX_BITS_PER_GRANULE * cfg->mode_gr);
|
||
|
if (mmm < fff)
|
||
|
mmm = fff;
|
||
|
printf("demand=%3d kbps max=%3d kbps limit=%3d kbps\n", fff, mmm, hhh);
|
||
|
#endif
|
||
|
eov->bitrate_index = 0;
|
||
|
}
|
||
|
if (used_bits <= frameBits[eov->bitrate_index]) {
|
||
|
/* update Reservoire status */
|
||
|
int mean_bits, fullframebits;
|
||
|
fullframebits = ResvFrameBegin(gfc, &mean_bits);
|
||
|
assert(used_bits <= fullframebits);
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
gr_info const *const cod_info = &l3_side->tt[gr][ch];
|
||
|
ResvAdjust(gfc, cod_info);
|
||
|
}
|
||
|
}
|
||
|
ResvFrameEnd(gfc, mean_bits);
|
||
|
}
|
||
|
else {
|
||
|
/* SHOULD NOT HAPPEN INTERNAL ERROR
|
||
|
*/
|
||
|
ERRORF(gfc, "INTERNAL ERROR IN VBR NEW CODE, please send bug report\n");
|
||
|
exit(-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/********************************************************************
|
||
|
*
|
||
|
* calc_target_bits()
|
||
|
*
|
||
|
* calculates target bits for ABR encoding
|
||
|
*
|
||
|
* mt 2000/05/31
|
||
|
*
|
||
|
********************************************************************/
|
||
|
|
||
|
static void
|
||
|
calc_target_bits(lame_internal_flags * gfc,
|
||
|
const FLOAT pe[2][2],
|
||
|
FLOAT const ms_ener_ratio[2],
|
||
|
int targ_bits[2][2], int *analog_silence_bits, int *max_frame_bits)
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
III_side_info_t const *const l3_side = &gfc->l3_side;
|
||
|
FLOAT res_factor;
|
||
|
int gr, ch, totbits, mean_bits;
|
||
|
int framesize = 576 * cfg->mode_gr;
|
||
|
|
||
|
eov->bitrate_index = cfg->vbr_max_bitrate_index;
|
||
|
*max_frame_bits = ResvFrameBegin(gfc, &mean_bits);
|
||
|
|
||
|
eov->bitrate_index = 1;
|
||
|
mean_bits = getframebits(gfc) - cfg->sideinfo_len * 8;
|
||
|
*analog_silence_bits = mean_bits / (cfg->mode_gr * cfg->channels_out);
|
||
|
|
||
|
mean_bits = cfg->vbr_avg_bitrate_kbps * framesize * 1000;
|
||
|
if (gfc->sv_qnt.substep_shaping & 1)
|
||
|
mean_bits *= 1.09;
|
||
|
mean_bits /= cfg->samplerate_out;
|
||
|
mean_bits -= cfg->sideinfo_len * 8;
|
||
|
mean_bits /= (cfg->mode_gr * cfg->channels_out);
|
||
|
|
||
|
/*
|
||
|
res_factor is the percentage of the target bitrate that should
|
||
|
be used on average. the remaining bits are added to the
|
||
|
bitreservoir and used for difficult to encode frames.
|
||
|
|
||
|
Since we are tracking the average bitrate, we should adjust
|
||
|
res_factor "on the fly", increasing it if the average bitrate
|
||
|
is greater than the requested bitrate, and decreasing it
|
||
|
otherwise. Reasonable ranges are from .9 to 1.0
|
||
|
|
||
|
Until we get the above suggestion working, we use the following
|
||
|
tuning:
|
||
|
compression ratio res_factor
|
||
|
5.5 (256kbps) 1.0 no need for bitreservoir
|
||
|
11 (128kbps) .93 7% held for reservoir
|
||
|
|
||
|
with linear interpolation for other values.
|
||
|
|
||
|
*/
|
||
|
res_factor = .93 + .07 * (11.0 - cfg->compression_ratio) / (11.0 - 5.5);
|
||
|
if (res_factor < .90)
|
||
|
res_factor = .90;
|
||
|
if (res_factor > 1.00)
|
||
|
res_factor = 1.00;
|
||
|
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
int sum = 0;
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
targ_bits[gr][ch] = res_factor * mean_bits;
|
||
|
|
||
|
if (pe[gr][ch] > 700) {
|
||
|
int add_bits = (pe[gr][ch] - 700) / 1.4;
|
||
|
|
||
|
gr_info const *const cod_info = &l3_side->tt[gr][ch];
|
||
|
targ_bits[gr][ch] = res_factor * mean_bits;
|
||
|
|
||
|
/* short blocks use a little extra, no matter what the pe */
|
||
|
if (cod_info->block_type == SHORT_TYPE) {
|
||
|
if (add_bits < mean_bits / 2)
|
||
|
add_bits = mean_bits / 2;
|
||
|
}
|
||
|
/* at most increase bits by 1.5*average */
|
||
|
if (add_bits > mean_bits * 3 / 2)
|
||
|
add_bits = mean_bits * 3 / 2;
|
||
|
else if (add_bits < 0)
|
||
|
add_bits = 0;
|
||
|
|
||
|
targ_bits[gr][ch] += add_bits;
|
||
|
}
|
||
|
if (targ_bits[gr][ch] > MAX_BITS_PER_CHANNEL) {
|
||
|
targ_bits[gr][ch] = MAX_BITS_PER_CHANNEL;
|
||
|
}
|
||
|
sum += targ_bits[gr][ch];
|
||
|
} /* for ch */
|
||
|
if (sum > MAX_BITS_PER_GRANULE) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ++ch) {
|
||
|
targ_bits[gr][ch] *= MAX_BITS_PER_GRANULE;
|
||
|
targ_bits[gr][ch] /= sum;
|
||
|
}
|
||
|
}
|
||
|
} /* for gr */
|
||
|
|
||
|
if (gfc->ov_enc.mode_ext == MPG_MD_MS_LR)
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
reduce_side(targ_bits[gr], ms_ener_ratio[gr], mean_bits * cfg->channels_out,
|
||
|
MAX_BITS_PER_GRANULE);
|
||
|
}
|
||
|
|
||
|
/* sum target bits
|
||
|
*/
|
||
|
totbits = 0;
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
if (targ_bits[gr][ch] > MAX_BITS_PER_CHANNEL)
|
||
|
targ_bits[gr][ch] = MAX_BITS_PER_CHANNEL;
|
||
|
totbits += targ_bits[gr][ch];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* repartion target bits if needed
|
||
|
*/
|
||
|
if (totbits > *max_frame_bits && totbits > 0) {
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
targ_bits[gr][ch] *= *max_frame_bits;
|
||
|
targ_bits[gr][ch] /= totbits;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/********************************************************************
|
||
|
*
|
||
|
* ABR_iteration_loop()
|
||
|
*
|
||
|
* encode a frame with a disired average bitrate
|
||
|
*
|
||
|
* mt 2000/05/31
|
||
|
*
|
||
|
********************************************************************/
|
||
|
|
||
|
void
|
||
|
ABR_iteration_loop(lame_internal_flags * gfc, const FLOAT pe[2][2],
|
||
|
const FLOAT ms_ener_ratio[2], const III_psy_ratio ratio[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
EncResult_t *const eov = &gfc->ov_enc;
|
||
|
FLOAT l3_xmin[SFBMAX];
|
||
|
FLOAT xrpow[576];
|
||
|
int targ_bits[2][2];
|
||
|
int mean_bits, max_frame_bits;
|
||
|
int ch, gr, ath_over;
|
||
|
int analog_silence_bits;
|
||
|
gr_info *cod_info;
|
||
|
III_side_info_t *const l3_side = &gfc->l3_side;
|
||
|
|
||
|
mean_bits = 0;
|
||
|
|
||
|
calc_target_bits(gfc, pe, ms_ener_ratio, targ_bits, &analog_silence_bits, &max_frame_bits);
|
||
|
|
||
|
/* encode granules
|
||
|
*/
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
|
||
|
if (gfc->ov_enc.mode_ext == MPG_MD_MS_LR) {
|
||
|
ms_convert(&gfc->l3_side, gr);
|
||
|
}
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
FLOAT adjust, masking_lower_db;
|
||
|
cod_info = &l3_side->tt[gr][ch];
|
||
|
|
||
|
if (cod_info->block_type != SHORT_TYPE) { /* NORM, START or STOP type */
|
||
|
/* adjust = 1.28/(1+exp(3.5-pe[gr][ch]/300.))-0.05; */
|
||
|
adjust = 0;
|
||
|
masking_lower_db = gfc->sv_qnt.mask_adjust - adjust;
|
||
|
}
|
||
|
else {
|
||
|
/* adjust = 2.56/(1+exp(3.5-pe[gr][ch]/300.))-0.14; */
|
||
|
adjust = 0;
|
||
|
masking_lower_db = gfc->sv_qnt.mask_adjust_short - adjust;
|
||
|
}
|
||
|
gfc->sv_qnt.masking_lower = pow(10.0, masking_lower_db * 0.1);
|
||
|
|
||
|
|
||
|
/* cod_info, scalefac and xrpow get initialized in init_outer_loop
|
||
|
*/
|
||
|
init_outer_loop(gfc, cod_info);
|
||
|
if (init_xrpow(gfc, cod_info, xrpow)) {
|
||
|
/* xr contains energy we will have to encode
|
||
|
* calculate the masking abilities
|
||
|
* find some good quantization in outer_loop
|
||
|
*/
|
||
|
ath_over = calc_xmin(gfc, &ratio[gr][ch], cod_info, l3_xmin);
|
||
|
if (0 == ath_over) /* analog silence */
|
||
|
targ_bits[gr][ch] = analog_silence_bits;
|
||
|
|
||
|
(void) outer_loop(gfc, cod_info, l3_xmin, xrpow, ch, targ_bits[gr][ch]);
|
||
|
}
|
||
|
iteration_finish_one(gfc, gr, ch);
|
||
|
} /* ch */
|
||
|
} /* gr */
|
||
|
|
||
|
/* find a bitrate which can refill the resevoir to positive size.
|
||
|
*/
|
||
|
for (eov->bitrate_index = cfg->vbr_min_bitrate_index;
|
||
|
eov->bitrate_index <= cfg->vbr_max_bitrate_index; eov->bitrate_index++) {
|
||
|
if (ResvFrameBegin(gfc, &mean_bits) >= 0)
|
||
|
break;
|
||
|
}
|
||
|
assert(eov->bitrate_index <= cfg->vbr_max_bitrate_index);
|
||
|
|
||
|
ResvFrameEnd(gfc, mean_bits);
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
/************************************************************************
|
||
|
*
|
||
|
* CBR_iteration_loop()
|
||
|
*
|
||
|
* author/date??
|
||
|
*
|
||
|
* encodes one frame of MP3 data with constant bitrate
|
||
|
*
|
||
|
************************************************************************/
|
||
|
|
||
|
void
|
||
|
CBR_iteration_loop(lame_internal_flags * gfc, const FLOAT pe[2][2],
|
||
|
const FLOAT ms_ener_ratio[2], const III_psy_ratio ratio[2][2])
|
||
|
{
|
||
|
SessionConfig_t const *const cfg = &gfc->cfg;
|
||
|
FLOAT l3_xmin[SFBMAX];
|
||
|
FLOAT xrpow[576];
|
||
|
int targ_bits[2];
|
||
|
int mean_bits, max_bits;
|
||
|
int gr, ch;
|
||
|
III_side_info_t *const l3_side = &gfc->l3_side;
|
||
|
gr_info *cod_info;
|
||
|
|
||
|
(void) ResvFrameBegin(gfc, &mean_bits);
|
||
|
|
||
|
/* quantize! */
|
||
|
for (gr = 0; gr < cfg->mode_gr; gr++) {
|
||
|
|
||
|
/* calculate needed bits
|
||
|
*/
|
||
|
max_bits = on_pe(gfc, pe, targ_bits, mean_bits, gr, gr);
|
||
|
|
||
|
if (gfc->ov_enc.mode_ext == MPG_MD_MS_LR) {
|
||
|
ms_convert(&gfc->l3_side, gr);
|
||
|
reduce_side(targ_bits, ms_ener_ratio[gr], mean_bits, max_bits);
|
||
|
}
|
||
|
|
||
|
for (ch = 0; ch < cfg->channels_out; ch++) {
|
||
|
FLOAT adjust, masking_lower_db;
|
||
|
cod_info = &l3_side->tt[gr][ch];
|
||
|
|
||
|
if (cod_info->block_type != SHORT_TYPE) { /* NORM, START or STOP type */
|
||
|
/* adjust = 1.28/(1+exp(3.5-pe[gr][ch]/300.))-0.05; */
|
||
|
adjust = 0;
|
||
|
masking_lower_db = gfc->sv_qnt.mask_adjust - adjust;
|
||
|
}
|
||
|
else {
|
||
|
/* adjust = 2.56/(1+exp(3.5-pe[gr][ch]/300.))-0.14; */
|
||
|
adjust = 0;
|
||
|
masking_lower_db = gfc->sv_qnt.mask_adjust_short - adjust;
|
||
|
}
|
||
|
gfc->sv_qnt.masking_lower = pow(10.0, masking_lower_db * 0.1);
|
||
|
|
||
|
/* init_outer_loop sets up cod_info, scalefac and xrpow
|
||
|
*/
|
||
|
init_outer_loop(gfc, cod_info);
|
||
|
if (init_xrpow(gfc, cod_info, xrpow)) {
|
||
|
/* xr contains energy we will have to encode
|
||
|
* calculate the masking abilities
|
||
|
* find some good quantization in outer_loop
|
||
|
*/
|
||
|
(void) calc_xmin(gfc, &ratio[gr][ch], cod_info, l3_xmin);
|
||
|
(void) outer_loop(gfc, cod_info, l3_xmin, xrpow, ch, targ_bits[ch]);
|
||
|
}
|
||
|
|
||
|
iteration_finish_one(gfc, gr, ch);
|
||
|
assert(cod_info->part2_3_length <= MAX_BITS_PER_CHANNEL);
|
||
|
assert(cod_info->part2_3_length <= targ_bits[ch]);
|
||
|
} /* for ch */
|
||
|
} /* for gr */
|
||
|
|
||
|
ResvFrameEnd(gfc, mean_bits);
|
||
|
}
|