winamp/Src/external_dependencies/openmpt-trunk/soundlib/SampleIO.cpp

1031 lines
35 KiB
C++

/*
* SampleIO.cpp
* ------------
* Purpose: Central code for reading and writing samples. Create your SampleIO object and have a go at the ReadSample and WriteSample functions!
* Notes : Not all combinations of possible sample format combinations are implemented, especially for WriteSample.
* Using the existing generic functions, it should be quite easy to extend the code, though.
* Authors: Olivier Lapicque
* OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#include "Loaders.h"
#include "SampleIO.h"
#include "openmpt/soundbase/SampleDecode.hpp"
#include "SampleCopy.h"
#include "SampleNormalize.h"
#include "ModSampleCopy.h"
#include "ITCompression.h"
#ifndef MODPLUG_NO_FILESAVE
#include "../common/mptFileIO.h"
#include "mpt/io/base.hpp"
#include "mpt/io/io.hpp"
#include "mpt/io/io_stdstream.hpp"
#include "mpt/io_write/buffer.hpp"
#endif
#include "BitReader.h"
OPENMPT_NAMESPACE_BEGIN
// Read a sample from memory
size_t SampleIO::ReadSample(ModSample &sample, FileReader &file) const
{
if(!file.IsValid())
{
return 0;
}
LimitMax(sample.nLength, MAX_SAMPLE_LENGTH);
FileReader::off_t bytesRead = 0; // Amount of memory that has been read from file
FileReader::off_t filePosition = file.GetPosition();
const std::byte * sourceBuf = nullptr;
FileReader::PinnedView restrictedSampleDataView;
FileReader::off_t fileSize = 0;
if(UsesFileReaderForDecoding())
{
sourceBuf = nullptr;
fileSize = file.BytesLeft();
} else if(!IsVariableLengthEncoded())
{
restrictedSampleDataView = file.GetPinnedView(CalculateEncodedSize(sample.nLength));
sourceBuf = restrictedSampleDataView.data();
fileSize = restrictedSampleDataView.size();
if(sourceBuf == nullptr)
return 0;
} else
{
MPT_ASSERT_NOTREACHED();
}
if(!IsVariableLengthEncoded() && sample.nLength > 0x40000)
{
// Limit sample length to available bytes in file to avoid excessive memory allocation.
// However, for ProTracker MODs we need to support samples exceeding the end of file
// (see the comment about MOD.shorttune2 in Load_mod.cpp), so as a semi-arbitrary threshold,
// we do not apply this limit to samples shorter than 256K.
size_t maxLength = fileSize - std::min(GetEncodedHeaderSize(), fileSize);
uint8 bps = GetEncodedBitsPerSample();
if(bps % 8u != 0)
{
MPT_ASSERT(GetEncoding() == ADPCM && bps == 4);
if(Util::MaxValueOfType(maxLength) / 2u >= maxLength)
maxLength *= 2;
else
maxLength = Util::MaxValueOfType(maxLength);
} else
{
size_t encodedBytesPerSample = GetNumChannels() * GetEncodedBitsPerSample() / 8u;
// Check if we can round up without overflowing
if(Util::MaxValueOfType(maxLength) - maxLength >= (encodedBytesPerSample - 1u))
maxLength += encodedBytesPerSample - 1u;
else
maxLength = Util::MaxValueOfType(maxLength);
maxLength /= encodedBytesPerSample;
}
LimitMax(sample.nLength, mpt::saturate_cast<SmpLength>(maxLength));
} else if(GetEncoding() == IT214 || GetEncoding() == IT215 || GetEncoding() == MDL || GetEncoding() == DMF)
{
// In the best case, IT compression represents each sample point as a single bit.
// In practice, there is of course the two-byte header per compressed block and the initial bit width change.
// As a result, if we have a file length of n, we know that the sample can be at most n*8 sample points long.
// For DMF, there are at least two bits per sample, and for MDL at least 5 (so both are worse than IT).
size_t maxLength = fileSize;
uint8 maxSamplesPerByte = 8 / GetNumChannels();
if(Util::MaxValueOfType(maxLength) / maxSamplesPerByte >= maxLength)
maxLength *= maxSamplesPerByte;
else
maxLength = Util::MaxValueOfType(maxLength);
LimitMax(sample.nLength, mpt::saturate_cast<SmpLength>(maxLength));
} else if(GetEncoding() == AMS)
{
if(fileSize <= 9)
return 0;
file.Skip(4); // Target sample size (we already know this)
SmpLength maxLength = std::min(file.ReadUint32LE(), mpt::saturate_cast<uint32>(fileSize));
file.SkipBack(8);
// In the best case, every byte triplet can decode to 255 bytes, which is a ratio of exactly 1:85
if(Util::MaxValueOfType(maxLength) / 85 >= maxLength)
maxLength *= 85;
else
maxLength = Util::MaxValueOfType(maxLength);
LimitMax(sample.nLength, maxLength / (m_bitdepth / 8u));
}
if(sample.nLength < 1)
{
return 0;
}
sample.uFlags.set(CHN_16BIT, GetBitDepth() >= 16);
sample.uFlags.set(CHN_STEREO, GetChannelFormat() != mono);
size_t sampleSize = sample.AllocateSample(); // Target sample size in bytes
if(sampleSize == 0)
{
sample.nLength = 0;
return 0;
}
MPT_ASSERT(sampleSize >= sample.GetSampleSizeInBytes());
//////////////////////////////////////////////////////
// Compressed samples
if(*this == SampleIO(_8bit, mono, littleEndian, ADPCM))
{
// 4-Bit ADPCM data
int8 compressionTable[16]; // ADPCM Compression LUT
if(file.ReadArray(compressionTable))
{
size_t readLength = (sample.nLength + 1) / 2;
LimitMax(readLength, file.BytesLeft());
const uint8 *inBuf = mpt::byte_cast<const uint8*>(sourceBuf) + sizeof(compressionTable);
int8 *outBuf = sample.sample8();
int8 delta = 0;
for(size_t i = readLength; i != 0; i--)
{
delta += compressionTable[*inBuf & 0x0F];
*(outBuf++) = delta;
delta += compressionTable[(*inBuf >> 4) & 0x0F];
*(outBuf++) = delta;
inBuf++;
}
bytesRead = sizeof(compressionTable) + readLength;
}
} else if(GetEncoding() == IT214 || GetEncoding() == IT215)
{
// IT 2.14 / 2.15 compressed samples
ITDecompression(file, sample, GetEncoding() == IT215);
bytesRead = file.GetPosition() - filePosition;
} else if(GetEncoding() == AMS && GetChannelFormat() == mono)
{
// AMS compressed samples
file.Skip(4); // Target sample size (we already know this)
uint32 sourceSize = file.ReadUint32LE();
int8 packCharacter = file.ReadUint8();
bytesRead += 9;
FileReader::PinnedView packedDataView = file.ReadPinnedView(sourceSize);
LimitMax(sourceSize, mpt::saturate_cast<uint32>(packedDataView.size()));
bytesRead += sourceSize;
AMSUnpack(reinterpret_cast<const int8 *>(packedDataView.data()), packedDataView.size(), sample.samplev(), sample.GetSampleSizeInBytes(), packCharacter);
if(sample.uFlags[CHN_16BIT] && !mpt::endian_is_little())
{
auto p = sample.sample16();
for(SmpLength length = sample.nLength; length != 0; length--, p++)
{
*p = mpt::bit_cast<int16le>(*p);
}
}
} else if(GetEncoding() == PTM8Dto16 && GetChannelFormat() == mono && GetBitDepth() == 16)
{
// PTM 8-Bit delta to 16-Bit sample
bytesRead = CopyMonoSample<SC::DecodeInt16Delta8>(sample, sourceBuf, fileSize);
} else if(GetEncoding() == MDL && GetChannelFormat() == mono && GetBitDepth() <= 16)
{
// Huffman MDL compressed samples
if(file.CanRead(8) && (fileSize = file.ReadUint32LE()) >= 4)
{
BitReader chunk = file.ReadChunk(fileSize);
bytesRead = chunk.GetLength() + 4;
uint8 dlt = 0, lowbyte = 0;
const bool is16bit = GetBitDepth() == 16;
try
{
for(SmpLength j = 0; j < sample.nLength; j++)
{
uint8 hibyte;
if(is16bit)
{
lowbyte = static_cast<uint8>(chunk.ReadBits(8));
}
bool sign = chunk.ReadBits(1) != 0;
if(chunk.ReadBits(1))
{
hibyte = static_cast<uint8>(chunk.ReadBits(3));
} else
{
hibyte = 8;
while(!chunk.ReadBits(1))
{
hibyte += 0x10;
}
hibyte += static_cast<uint8>(chunk.ReadBits(4));
}
if(sign)
{
hibyte = ~hibyte;
}
dlt += hibyte;
if(!is16bit)
{
sample.sample8()[j] = dlt;
} else
{
sample.sample16()[j] = lowbyte | (dlt << 8);
}
}
} catch(const BitReader::eof &)
{
// Data is not sufficient to decode the whole sample
//AddToLog(LogWarning, "Truncated MDL sample block");
}
}
} else if(GetEncoding() == DMF && GetChannelFormat() == mono && GetBitDepth() <= 16)
{
// DMF Huffman compression
if(fileSize > 4)
{
bytesRead = DMFUnpack(file, mpt::byte_cast<uint8 *>(sample.sampleb()), sample.GetSampleSizeInBytes());
}
} else if((GetEncoding() == uLaw || GetEncoding() == aLaw) && GetBitDepth() == 16 && (GetChannelFormat() == mono || GetChannelFormat() == stereoInterleaved))
{
SmpLength readLength = sample.nLength * GetNumChannels();
LimitMax(readLength, mpt::saturate_cast<SmpLength>(fileSize));
bytesRead = readLength;
const std::byte *inBuf = sourceBuf;
int16 *outBuf = sample.sample16();
if(GetEncoding() == uLaw)
{
SC::DecodeInt16uLaw conv;
while(readLength--)
{
*(outBuf++) = conv(inBuf++);
}
} else
{
SC::DecodeInt16ALaw conv;
while(readLength--)
{
*(outBuf++) = conv(inBuf++);
}
}
}
/////////////////////////
// Uncompressed samples
//////////////////////////////////////////////////////
// 8-Bit / Mono / PCM
else if(GetBitDepth() == 8 && GetChannelFormat() == mono)
{
switch(GetEncoding())
{
case signedPCM: // 8-Bit / Mono / Signed / PCM
bytesRead = CopyMonoSample<SC::DecodeInt8>(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 8-Bit / Mono / Unsigned / PCM
bytesRead = CopyMonoSample<SC::DecodeUint8>(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 8-Bit / Mono / Delta / PCM
case MT2:
bytesRead = CopyMonoSample<SC::DecodeInt8Delta>(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 8-Bit / Stereo Split / PCM
else if(GetBitDepth() == 8 && GetChannelFormat() == stereoSplit)
{
switch(GetEncoding())
{
case signedPCM: // 8-Bit / Stereo Split / Signed / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeInt8>(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 8-Bit / Stereo Split / Unsigned / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeUint8>(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 8-Bit / Stereo Split / Delta / PCM
case MT2: // same as deltaPCM, but right channel is stored as a difference from the left channel
bytesRead = CopyStereoSplitSample<SC::DecodeInt8Delta>(sample, sourceBuf, fileSize);
if(GetEncoding() == MT2)
{
for(int8 *p = sample.sample8(), *pEnd = p + sample.nLength * 2; p < pEnd; p += 2)
{
p[1] = static_cast<int8>(static_cast<uint8>(p[0]) + static_cast<uint8>(p[1]));
}
}
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 8-Bit / Stereo Interleaved / PCM
else if(GetBitDepth() == 8 && GetChannelFormat() == stereoInterleaved)
{
switch(GetEncoding())
{
case signedPCM: // 8-Bit / Stereo Interleaved / Signed / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt8>(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 8-Bit / Stereo Interleaved / Unsigned / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeUint8>(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 8-Bit / Stereo Interleaved / Delta / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt8Delta>(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 16-Bit / Mono / Little Endian / PCM
else if(GetBitDepth() == 16 && GetChannelFormat() == mono && GetEndianness() == littleEndian)
{
switch(GetEncoding())
{
case signedPCM: // 16-Bit / Stereo Interleaved / Signed / PCM
bytesRead = CopyMonoSample<SC::DecodeInt16<0, littleEndian16> >(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 16-Bit / Stereo Interleaved / Unsigned / PCM
bytesRead = CopyMonoSample<SC::DecodeInt16<0x8000u, littleEndian16> >(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 16-Bit / Stereo Interleaved / Delta / PCM
case MT2:
bytesRead = CopyMonoSample<SC::DecodeInt16Delta<littleEndian16> >(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 16-Bit / Mono / Big Endian / PCM
else if(GetBitDepth() == 16 && GetChannelFormat() == mono && GetEndianness() == bigEndian)
{
switch(GetEncoding())
{
case signedPCM: // 16-Bit / Mono / Signed / PCM
bytesRead = CopyMonoSample<SC::DecodeInt16<0, bigEndian16> >(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 16-Bit / Mono / Unsigned / PCM
bytesRead = CopyMonoSample<SC::DecodeInt16<0x8000u, bigEndian16> >(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 16-Bit / Mono / Delta / PCM
bytesRead = CopyMonoSample<SC::DecodeInt16Delta<bigEndian16> >(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 16-Bit / Stereo Split / Little Endian / PCM
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoSplit && GetEndianness() == littleEndian)
{
switch(GetEncoding())
{
case signedPCM: // 16-Bit / Stereo Split / Signed / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeInt16<0, littleEndian16> >(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 16-Bit / Stereo Split / Unsigned / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeInt16<0x8000u, littleEndian16> >(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 16-Bit / Stereo Split / Delta / PCM
case MT2: // same as deltaPCM, but right channel is stored as a difference from the left channel
bytesRead = CopyStereoSplitSample<SC::DecodeInt16Delta<littleEndian16> >(sample, sourceBuf, fileSize);
if(GetEncoding() == MT2)
{
for(int16 *p = sample.sample16(), *pEnd = p + sample.nLength * 2; p < pEnd; p += 2)
{
p[1] = static_cast<int16>(static_cast<uint16>(p[0]) + static_cast<uint16>(p[1]));
}
}
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 16-Bit / Stereo Split / Big Endian / PCM
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoSplit && GetEndianness() == bigEndian)
{
switch(GetEncoding())
{
case signedPCM: // 16-Bit / Stereo Split / Signed / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeInt16<0, bigEndian16> >(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 16-Bit / Stereo Split / Unsigned / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeInt16<0x8000u, bigEndian16> >(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 16-Bit / Stereo Split / Delta / PCM
bytesRead = CopyStereoSplitSample<SC::DecodeInt16Delta<bigEndian16> >(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 16-Bit / Stereo Interleaved / Little Endian / PCM
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoInterleaved && GetEndianness() == littleEndian)
{
switch(GetEncoding())
{
case signedPCM: // 16-Bit / Stereo Interleaved / Signed / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt16<0, littleEndian16> >(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 16-Bit / Stereo Interleaved / Unsigned / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt16<0x8000u, littleEndian16> >(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 16-Bit / Stereo Interleaved / Delta / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt16Delta<littleEndian16> >(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 16-Bit / Stereo Interleaved / Big Endian / PCM
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoInterleaved && GetEndianness() == bigEndian)
{
switch(GetEncoding())
{
case signedPCM: // 16-Bit / Stereo Interleaved / Signed / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt16<0, bigEndian16> >(sample, sourceBuf, fileSize);
break;
case unsignedPCM: // 16-Bit / Stereo Interleaved / Unsigned / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt16<0x8000u, bigEndian16> >(sample, sourceBuf, fileSize);
break;
case deltaPCM: // 16-Bit / Stereo Interleaved / Delta / PCM
bytesRead = CopyStereoInterleavedSample<SC::DecodeInt16Delta<bigEndian16> >(sample, sourceBuf, fileSize);
break;
default:
MPT_ASSERT_NOTREACHED();
break;
}
}
//////////////////////////////////////////////////////
// 24-Bit / Signed / Mono / PCM
else if(GetBitDepth() == 24 && GetChannelFormat() == mono && GetEncoding() == signedPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt24<0, littleEndian24> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt24<0, bigEndian24> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 24-Bit / Signed / Stereo Interleaved / PCM
else if(GetBitDepth() == 24 && GetChannelFormat() == stereoInterleaved && GetEncoding() == signedPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt24<0, littleEndian24> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt24<0, bigEndian24> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Signed / Mono / PCM
else if(GetBitDepth() == 32 && GetChannelFormat() == mono && GetEncoding() == signedPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt32<0, littleEndian32> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt32<0, bigEndian32> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Signed / Stereo Interleaved / PCM
else if(GetBitDepth() == 32 && GetChannelFormat() == stereoInterleaved && GetEncoding() == signedPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt32<0, littleEndian32> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, int32>, SC::DecodeInt32<0, bigEndian32> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 64-Bit / Signed / Mono / PCM
else if(GetBitDepth() == 64 && GetChannelFormat() == mono && GetEncoding() == signedPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, int64>, SC::DecodeInt64<0, littleEndian64> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, int64>, SC::DecodeInt64<0, bigEndian64> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 64-Bit / Signed / Stereo Interleaved / PCM
else if(GetBitDepth() == 64 && GetChannelFormat() == stereoInterleaved && GetEncoding() == signedPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, int64>, SC::DecodeInt64<0, littleEndian64> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, int64>, SC::DecodeInt64<0, bigEndian64> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Mono / PCM
else if(GetBitDepth() == 32 && GetChannelFormat() == mono && GetEncoding() == floatPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeFloat32<littleEndian32> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeFloat32<bigEndian32> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Stereo Interleaved / PCM
else if(GetBitDepth() == 32 && GetChannelFormat() == stereoInterleaved && GetEncoding() == floatPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeFloat32<littleEndian32> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeFloat32<bigEndian32> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 64-Bit / Float / Mono / PCM
else if(GetBitDepth() == 64 && GetChannelFormat() == mono && GetEncoding() == floatPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, float64>, SC::DecodeFloat64<littleEndian64> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyMonoSample<SC::ConversionChain<SC::Convert<int16, float64>, SC::DecodeFloat64<bigEndian64> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 64-Bit / Float / Stereo Interleaved / PCM
else if(GetBitDepth() == 64 && GetChannelFormat() == stereoInterleaved && GetEncoding() == floatPCM)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, float64>, SC::DecodeFloat64<littleEndian64> > >(sample, sourceBuf, fileSize);
} else
{
bytesRead = CopyStereoInterleavedSample<SC::ConversionChain<SC::Convert<int16, float64>, SC::DecodeFloat64<bigEndian64> > >(sample, sourceBuf, fileSize);
}
}
//////////////////////////////////////////////////////
// 24-Bit / Signed / Mono, Stereo Interleaved / PCM
else if(GetBitDepth() == 24 && (GetChannelFormat() == mono || GetChannelFormat() == stereoInterleaved) && GetEncoding() == signedPCMnormalize)
{
// Normalize to 16-Bit
uint32 srcPeak = uint32(1)<<31;
if(GetEndianness() == littleEndian)
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, int32>, SC::DecodeInt24<0, littleEndian24> > >(sample, sourceBuf, fileSize, &srcPeak);
} else
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, int32>, SC::DecodeInt24<0, bigEndian24> > >(sample, sourceBuf, fileSize, &srcPeak);
}
if(bytesRead && srcPeak != uint32(1)<<31)
{
// Adjust sample volume so we do not affect relative volume of the sample. Normalizing is only done to increase precision.
sample.nGlobalVol = static_cast<uint16>(Clamp(Util::muldivr_unsigned(sample.nGlobalVol, srcPeak, uint32(1)<<31), uint32(1), uint32(64)));
sample.uFlags.set(SMP_MODIFIED);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Signed / Mono, Stereo Interleaved / PCM
else if(GetBitDepth() == 32 && (GetChannelFormat() == mono || GetChannelFormat() == stereoInterleaved) && GetEncoding() == signedPCMnormalize)
{
// Normalize to 16-Bit
uint32 srcPeak = uint32(1)<<31;
if(GetEndianness() == littleEndian)
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, int32>, SC::DecodeInt32<0, littleEndian32> > >(sample, sourceBuf, fileSize, &srcPeak);
} else
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, int32>, SC::DecodeInt32<0, bigEndian32> > >(sample, sourceBuf, fileSize, &srcPeak);
}
if(bytesRead && srcPeak != uint32(1)<<31)
{
// Adjust sample volume so we do not affect relative volume of the sample. Normalizing is only done to increase precision.
sample.nGlobalVol = static_cast<uint16>(Clamp(Util::muldivr_unsigned(sample.nGlobalVol, srcPeak, uint32(1)<<31), uint32(1), uint32(64)));
sample.uFlags.set(SMP_MODIFIED);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Mono, Stereo Interleaved / PCM
else if(GetBitDepth() == 32 && (GetChannelFormat() == mono || GetChannelFormat() == stereoInterleaved) && GetEncoding() == floatPCMnormalize)
{
// Normalize to 16-Bit
float32 srcPeak = 1.0f;
if(GetEndianness() == littleEndian)
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, float32>, SC::DecodeFloat32<littleEndian32> > >(sample, sourceBuf, fileSize, &srcPeak);
} else
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, float32>, SC::DecodeFloat32<bigEndian32> > >(sample, sourceBuf, fileSize, &srcPeak);
}
if(bytesRead && srcPeak != 1.0f)
{
// Adjust sample volume so we do not affect relative volume of the sample. Normalizing is only done to increase precision.
sample.nGlobalVol = mpt::saturate_round<uint16>(Clamp(sample.nGlobalVol * srcPeak, 1.0f, 64.0f));
sample.uFlags.set(SMP_MODIFIED);
}
}
//////////////////////////////////////////////////////
// 64-Bit / Float / Mono, Stereo Interleaved / PCM
else if(GetBitDepth() == 64 && (GetChannelFormat() == mono || GetChannelFormat() == stereoInterleaved) && GetEncoding() == floatPCMnormalize)
{
// Normalize to 16-Bit
float64 srcPeak = 1.0;
if(GetEndianness() == littleEndian)
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, float64>, SC::DecodeFloat64<littleEndian64> > >(sample, sourceBuf, fileSize, &srcPeak);
} else
{
bytesRead = CopyAndNormalizeSample<SC::NormalizationChain<SC::Convert<int16, float64>, SC::DecodeFloat64<bigEndian64> > >(sample, sourceBuf, fileSize, &srcPeak);
}
if(bytesRead && srcPeak != 1.0)
{
// Adjust sample volume so we do not affect relative volume of the sample. Normalizing is only done to increase precision.
sample.nGlobalVol = mpt::saturate_round<uint16>(Clamp(sample.nGlobalVol * srcPeak, 1.0, 64.0));
sample.uFlags.set(SMP_MODIFIED);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Mono / PCM / full scale 2^15
else if(GetBitDepth() == 32 && GetChannelFormat() == mono && GetEncoding() == floatPCM15)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<littleEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<littleEndian32>(1.0f / static_cast<float>(1<<15)))
);
} else
{
bytesRead = CopyMonoSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<bigEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<bigEndian32>(1.0f / static_cast<float>(1<<15)))
);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Stereo Interleaved / PCM / full scale 2^15
else if(GetBitDepth() == 32 && GetChannelFormat() == stereoInterleaved && GetEncoding() == floatPCM15)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<littleEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<littleEndian32>(1.0f / static_cast<float>(1<<15)))
);
} else
{
bytesRead = CopyStereoInterleavedSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<bigEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<bigEndian32>(1.0f / static_cast<float>(1<<15)))
);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Stereo Interleaved / PCM / full scale 2^23
else if(GetBitDepth() == 32 && GetChannelFormat() == mono && GetEncoding() == floatPCM23)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyMonoSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<littleEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<littleEndian32>(1.0f / static_cast<float>(1<<23)))
);
} else
{
bytesRead = CopyMonoSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<bigEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<bigEndian32>(1.0f / static_cast<float>(1<<23)))
);
}
}
//////////////////////////////////////////////////////
// 32-Bit / Float / Stereo Interleaved / PCM / full scale 2^23
else if(GetBitDepth() == 32 && GetChannelFormat() == stereoInterleaved && GetEncoding() == floatPCM23)
{
if(GetEndianness() == littleEndian)
{
bytesRead = CopyStereoInterleavedSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<littleEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<littleEndian32>(1.0f / static_cast<float>(1<<23)))
);
} else
{
bytesRead = CopyStereoInterleavedSample
(sample, sourceBuf, fileSize,
SC::ConversionChain<SC::Convert<int16, float32>, SC::DecodeScaledFloat32<bigEndian32> >
(SC::Convert<int16, float32>(), SC::DecodeScaledFloat32<bigEndian32>(1.0f / static_cast<float>(1<<23)))
);
}
}
////////////////
// Unsupported
else
{
MPT_ASSERT_NOTREACHED();
}
MPT_ASSERT(filePosition + bytesRead <= file.GetLength());
file.Seek(filePosition + bytesRead);
return bytesRead;
}
#ifndef MODPLUG_NO_FILESAVE
// Write a sample to file
size_t SampleIO::WriteSample(std::ostream &f, const ModSample &sample, SmpLength maxSamples) const
{
if(sample.uFlags[CHN_ADLIB])
{
mpt::IO::Write(f, sample.adlib);
return sizeof(sample.adlib);
}
if(!sample.HasSampleData())
{
return 0;
}
std::array<std::byte, mpt::IO::BUFFERSIZE_TINY> writeBuffer;
mpt::IO::WriteBuffer<std::ostream> fb{f, mpt::as_span(writeBuffer)};
SmpLength numSamples = sample.nLength;
if(maxSamples && numSamples > maxSamples)
{
numSamples = maxSamples;
}
std::size_t len = CalculateEncodedSize(numSamples);
if(GetBitDepth() == 16 && GetChannelFormat() == mono && GetEndianness() == littleEndian &&
(GetEncoding() == signedPCM || GetEncoding() == unsignedPCM || GetEncoding() == deltaPCM))
{
// 16-bit little-endian mono samples
MPT_ASSERT(len == numSamples * 2);
const int16 *const pSample16 = sample.sample16();
const int16 *p = pSample16;
int s_old = 0;
const int s_ofs = (GetEncoding() == unsignedPCM) ? 0x8000 : 0;
for(SmpLength j = 0; j < numSamples; j++)
{
int s_new = *p;
p++;
if(sample.uFlags[CHN_STEREO])
{
// Downmix stereo
s_new = (s_new + (*p) + 1) / 2;
p++;
}
if(GetEncoding() == deltaPCM)
{
mpt::IO::Write(fb, mpt::as_le(static_cast<int16>(s_new - s_old)));
s_old = s_new;
} else
{
mpt::IO::Write(fb, mpt::as_le(static_cast<int16>(s_new + s_ofs)));
}
}
}
else if(GetBitDepth() == 8 && GetChannelFormat() == stereoSplit &&
(GetEncoding() == signedPCM || GetEncoding() == unsignedPCM || GetEncoding() == deltaPCM))
{
// 8-bit Stereo samples (not interleaved)
MPT_ASSERT(len == numSamples * 2);
const int8 *const pSample8 = sample.sample8();
const int s_ofs = (GetEncoding() == unsignedPCM) ? 0x80 : 0;
for (uint32 iCh=0; iCh<2; iCh++)
{
const int8 *p = pSample8 + iCh;
int s_old = 0;
for (SmpLength j = 0; j < numSamples; j++)
{
int s_new = *p;
p += 2;
if (GetEncoding() == deltaPCM)
{
mpt::IO::Write(fb, static_cast<int8>(s_new - s_old));
s_old = s_new;
} else
{
mpt::IO::Write(fb, static_cast<int8>(s_new + s_ofs));
}
}
}
}
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoSplit && GetEndianness() == littleEndian &&
(GetEncoding() == signedPCM || GetEncoding() == unsignedPCM || GetEncoding() == deltaPCM))
{
// 16-bit little-endian Stereo samples (not interleaved)
MPT_ASSERT(len == numSamples * 4);
const int16 *const pSample16 = sample.sample16();
const int s_ofs = (GetEncoding() == unsignedPCM) ? 0x8000 : 0;
for (uint32 iCh=0; iCh<2; iCh++)
{
const int16 *p = pSample16 + iCh;
int s_old = 0;
for (SmpLength j = 0; j < numSamples; j++)
{
int s_new = *p;
p += 2;
if (GetEncoding() == deltaPCM)
{
mpt::IO::Write(fb, mpt::as_le(static_cast<int16>(s_new - s_old)));
s_old = s_new;
} else
{
mpt::IO::Write(fb, mpt::as_le(static_cast<int16>(s_new + s_ofs)));
}
}
}
}
else if(GetBitDepth() == 8 && GetChannelFormat() == stereoInterleaved && GetEncoding() == signedPCM)
{
// Stereo signed interleaved
MPT_ASSERT(len == numSamples * 2);
const int8 *const pSample8 = sample.sample8();
mpt::IO::WriteRaw(f, reinterpret_cast<const std::byte*>(pSample8), len);
}
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoInterleaved && GetEncoding() == signedPCM && GetEndianness() == littleEndian)
{
// Stereo signed interleaved
MPT_ASSERT(len == numSamples * 4);
const int16 *const pSample16 = sample.sample16();
const int16 *p = pSample16;
for(SmpLength j = 0; j < numSamples; j++)
{
mpt::IO::Write(fb, mpt::as_le(p[0]));
mpt::IO::Write(fb, mpt::as_le(p[1]));
p += 2;
}
}
else if(GetBitDepth() == 16 && GetChannelFormat() == stereoInterleaved && GetEncoding() == signedPCM && GetEndianness() == bigEndian)
{
// Stereo signed interleaved
MPT_ASSERT(len == numSamples * 4);
const int16 *const pSample16 = sample.sample16();
const int16 *p = pSample16;
for(SmpLength j = 0; j < numSamples; j++)
{
mpt::IO::Write(fb, mpt::as_be(p[0]));
mpt::IO::Write(fb, mpt::as_be(p[1]));
p += 2;
}
}
else if(GetBitDepth() == 8 && GetChannelFormat() == stereoInterleaved && GetEncoding() == unsignedPCM)
{
// Stereo unsigned interleaved
MPT_ASSERT(len == numSamples * 2);
const int8 *const pSample8 = sample.sample8();
for(SmpLength j = 0; j < numSamples * 2; j++)
{
mpt::IO::Write(fb, static_cast<int8>(static_cast<uint8>(pSample8[j]) + 0x80));
}
}
else if(GetEncoding() == IT214 || GetEncoding() == IT215)
{
// IT2.14-encoded samples
ITCompression its(sample, GetEncoding() == IT215, &f, numSamples);
len = its.GetCompressedSize();
}
// Default: assume 8-bit PCM data
else
{
MPT_ASSERT(GetBitDepth() == 8);
MPT_ASSERT(len == numSamples);
if(sample.uFlags[CHN_16BIT])
{
const int16 *p = sample.sample16();
int s_old = 0;
const int s_ofs = (GetEncoding() == unsignedPCM) ? 0x80 : 0;
for(SmpLength j = 0; j < numSamples; j++)
{
int s_new = mpt::rshift_signed(*p, 8);
p++;
if(sample.uFlags[CHN_STEREO])
{
s_new = (s_new + mpt::rshift_signed(*p, 8) + 1) / 2;
p++;
}
if(GetEncoding() == deltaPCM)
{
mpt::IO::Write(fb, static_cast<int8>(s_new - s_old));
s_old = s_new;
} else
{
mpt::IO::Write(fb, static_cast<int8>(s_new + s_ofs));
}
}
} else
{
const int8 *const pSample8 = sample.sample8();
const int8 *p = pSample8;
int s_old = 0;
const int s_ofs = (GetEncoding() == unsignedPCM) ? 0x80 : 0;
for(SmpLength j = 0; j < numSamples; j++)
{
int s_new = *p;
p++;
if(sample.uFlags[CHN_STEREO])
{
s_new = (s_new + (static_cast<int>(*p)) + 1) / 2;
p++;
}
if(GetEncoding() == deltaPCM)
{
mpt::IO::Write(fb, static_cast<int8>(s_new - s_old));
s_old = s_new;
} else
{
mpt::IO::Write(fb, static_cast<int8>(s_new + s_ofs));
}
}
}
}
return len;
}
#endif // MODPLUG_NO_FILESAVE
OPENMPT_NAMESPACE_END