winamp/Src/external_dependencies/openmpt-trunk/soundlib/plugins/dmo/Chorus.cpp

307 lines
7.5 KiB
C++

/*
* Chorus.cpp
* ----------
* Purpose: Implementation of the DMO Chorus DSP (for non-Windows platforms)
* Notes : (currently none)
* Authors: OpenMPT Devs
* The OpenMPT source code is released under the BSD license. Read LICENSE for more details.
*/
#include "stdafx.h"
#ifndef NO_PLUGINS
#include "../../Sndfile.h"
#include "Chorus.h"
#include "mpt/base/numbers.hpp"
#endif // !NO_PLUGINS
OPENMPT_NAMESPACE_BEGIN
#ifndef NO_PLUGINS
namespace DMO
{
IMixPlugin* Chorus::Create(VSTPluginLib &factory, CSoundFile &sndFile, SNDMIXPLUGIN *mixStruct)
{
return new (std::nothrow) Chorus(factory, sndFile, mixStruct);
}
Chorus::Chorus(VSTPluginLib &factory, CSoundFile &sndFile, SNDMIXPLUGIN *mixStruct, bool isFlanger)
: IMixPlugin(factory, sndFile, mixStruct)
, m_isFlanger(isFlanger)
{
m_param[kChorusWetDryMix] = 0.5f;
m_param[kChorusDepth] = 0.1f;
m_param[kChorusFrequency] = 0.11f;
m_param[kChorusWaveShape] = 1.0f;
m_param[kChorusPhase] = 0.75f;
m_param[kChorusFeedback] = (25.0f + 99.0f) / 198.0f;
m_param[kChorusDelay] = 0.8f;
m_mixBuffer.Initialize(2, 2);
InsertIntoFactoryList();
}
// Integer part of buffer position
int32 Chorus::GetBufferIntOffset(int32 fpOffset) const
{
if(fpOffset < 0)
fpOffset += m_bufSize * 4096;
MPT_ASSERT(fpOffset >= 0);
return (fpOffset / 4096) % m_bufSize;
}
void Chorus::Process(float *pOutL, float *pOutR, uint32 numFrames)
{
if(!m_bufSize || !m_mixBuffer.Ok())
return;
const float *in[2] = { m_mixBuffer.GetInputBuffer(0), m_mixBuffer.GetInputBuffer(1) };
float *out[2] = { m_mixBuffer.GetOutputBuffer(0), m_mixBuffer.GetOutputBuffer(1) };
const bool isTriangle = IsTriangle();
const float feedback = Feedback() / 100.0f;
const float wetDryMix = WetDryMix();
const uint32 phase = Phase();
const auto &bufferR = m_isFlanger ? m_bufferR : m_bufferL;
for(uint32 i = numFrames; i != 0; i--)
{
const float leftIn = *(in[0])++;
const float rightIn = *(in[1])++;
const int32 readOffset = GetBufferIntOffset(m_bufPos + m_delayOffset);
const int32 writeOffset = GetBufferIntOffset(m_bufPos);
if(m_isFlanger)
{
m_DryBufferL[m_dryWritePos] = leftIn;
m_DryBufferR[m_dryWritePos] = rightIn;
m_bufferL[writeOffset] = (m_bufferL[readOffset] * feedback) + leftIn;
m_bufferR[writeOffset] = (m_bufferR[readOffset] * feedback) + rightIn;
} else
{
m_bufferL[writeOffset] = (m_bufferL[readOffset] * feedback) + (leftIn + rightIn) * 0.5f;
}
float waveMin;
float waveMax;
if(isTriangle)
{
m_waveShapeMin += m_waveShapeVal;
m_waveShapeMax += m_waveShapeVal;
if(m_waveShapeMin > 1)
m_waveShapeMin -= 2;
if(m_waveShapeMax > 1)
m_waveShapeMax -= 2;
waveMin = std::abs(m_waveShapeMin) * 2 - 1;
waveMax = std::abs(m_waveShapeMax) * 2 - 1;
} else
{
m_waveShapeMin = m_waveShapeMax * m_waveShapeVal + m_waveShapeMin;
m_waveShapeMax = m_waveShapeMax - m_waveShapeMin * m_waveShapeVal;
waveMin = m_waveShapeMin;
waveMax = m_waveShapeMax;
}
const float leftDelayIn = m_isFlanger ? m_DryBufferL[(m_dryWritePos + 2) % 3] : leftIn;
const float rightDelayIn = m_isFlanger ? m_DryBufferR[(m_dryWritePos + 2) % 3] : rightIn;
float left1 = m_bufferL[GetBufferIntOffset(m_bufPos + m_delayL)];
float left2 = m_bufferL[GetBufferIntOffset(m_bufPos + m_delayL + 4096)];
float fracPos = (m_delayL & 0xFFF) * (1.0f / 4096.0f);
float leftOut = (left2 - left1) * fracPos + left1;
*(out[0])++ = leftDelayIn + (leftOut - leftDelayIn) * wetDryMix;
float right1 = bufferR[GetBufferIntOffset(m_bufPos + m_delayR)];
float right2 = bufferR[GetBufferIntOffset(m_bufPos + m_delayR + 4096)];
fracPos = (m_delayR & 0xFFF) * (1.0f / 4096.0f);
float rightOut = (right2 - right1) * fracPos + right1;
*(out[1])++ = rightDelayIn + (rightOut - rightDelayIn) * wetDryMix;
// Increment delay positions
if(m_dryWritePos <= 0)
m_dryWritePos += 3;
m_dryWritePos--;
m_delayL = m_delayOffset + (phase < 4 ? 1 : -1) * static_cast<int32>(waveMin * m_depthDelay);
m_delayR = m_delayOffset + (phase < 2 ? -1 : 1) * static_cast<int32>(((phase % 2u) ? waveMax : waveMin) * m_depthDelay);
if(m_bufPos <= 0)
m_bufPos += m_bufSize * 4096;
m_bufPos -= 4096;
}
ProcessMixOps(pOutL, pOutR, m_mixBuffer.GetOutputBuffer(0), m_mixBuffer.GetOutputBuffer(1), numFrames);
}
PlugParamValue Chorus::GetParameter(PlugParamIndex index)
{
if(index < kChorusNumParameters)
{
return m_param[index];
}
return 0;
}
void Chorus::SetParameter(PlugParamIndex index, PlugParamValue value)
{
if(index < kChorusNumParameters)
{
value = mpt::safe_clamp(value, 0.0f, 1.0f);
if(index == kChorusWaveShape)
{
value = mpt::round(value);
if(m_param[index] != value)
{
m_waveShapeMin = 0.0f;
m_waveShapeMax = 0.5f + value * 0.5f;
}
} else if(index == kChorusPhase)
{
value = mpt::round(value * 4.0f) / 4.0f;
}
m_param[index] = value;
RecalculateChorusParams();
}
}
void Chorus::Resume()
{
PositionChanged();
RecalculateChorusParams();
m_isResumed = true;
m_waveShapeMin = 0.0f;
m_waveShapeMax = IsTriangle() ? 0.5f : 1.0f;
m_delayL = m_delayR = m_delayOffset;
m_bufPos = 0;
m_dryWritePos = 0;
}
void Chorus::PositionChanged()
{
m_bufSize = Util::muldiv(m_SndFile.GetSampleRate(), 3840, 1000);
try
{
m_bufferL.assign(m_bufSize, 0.0f);
if(m_isFlanger)
m_bufferR.assign(m_bufSize, 0.0f);
m_DryBufferL.fill(0.0f);
m_DryBufferR.fill(0.0f);
} catch(mpt::out_of_memory e)
{
mpt::delete_out_of_memory(e);
m_bufSize = 0;
}
}
#ifdef MODPLUG_TRACKER
CString Chorus::GetParamName(PlugParamIndex param)
{
switch(param)
{
case kChorusWetDryMix: return _T("WetDryMix");
case kChorusDepth: return _T("Depth");
case kChorusFrequency: return _T("Frequency");
case kChorusWaveShape: return _T("WaveShape");
case kChorusPhase: return _T("Phase");
case kChorusFeedback: return _T("Feedback");
case kChorusDelay: return _T("Delay");
}
return CString();
}
CString Chorus::GetParamLabel(PlugParamIndex param)
{
switch(param)
{
case kChorusWetDryMix:
case kChorusDepth:
case kChorusFeedback:
return _T("%");
case kChorusFrequency:
return _T("Hz");
case kChorusPhase:
return mpt::ToCString(MPT_UTF8("\xC2\xB0")); // U+00B0 DEGREE SIGN
case kChorusDelay:
return _T("ms");
}
return CString();
}
CString Chorus::GetParamDisplay(PlugParamIndex param)
{
CString s;
float value = m_param[param];
switch(param)
{
case kChorusWetDryMix:
case kChorusDepth:
value *= 100.0f;
break;
case kChorusFrequency:
value = FrequencyInHertz();
break;
case kChorusWaveShape:
return (value < 1) ? _T("Triangle") : _T("Sine");
break;
case kChorusPhase:
switch(Phase())
{
case 0: return _T("-180");
case 1: return _T("-90");
case 2: return _T("0");
case 3: return _T("90");
case 4: return _T("180");
}
break;
case kChorusFeedback:
value = Feedback();
break;
case kChorusDelay:
value = Delay();
}
s.Format(_T("%.2f"), value);
return s;
}
#endif // MODPLUG_TRACKER
void Chorus::RecalculateChorusParams()
{
const float sampleRate = static_cast<float>(m_SndFile.GetSampleRate());
float delaySamples = Delay() * sampleRate / 1000.0f;
m_depthDelay = Depth() * delaySamples * 2048.0f;
m_delayOffset = mpt::saturate_round<int32>(4096.0f * (delaySamples + 2.0f));
m_frequency = FrequencyInHertz();
const float frequencySamples = m_frequency / sampleRate;
if(IsTriangle())
m_waveShapeVal = frequencySamples * 2.0f;
else
m_waveShapeVal = std::sin(frequencySamples * mpt::numbers::pi_v<float>) * 2.0f;
}
} // namespace DMO
#else
MPT_MSVC_WORKAROUND_LNK4221(Chorus)
#endif // !NO_PLUGINS
OPENMPT_NAMESPACE_END