winamp/Src/Plugins/Input/in_dshow/audioswitch.cpp

1792 lines
48 KiB
C++

#include <windows.h>
#include <AtlBase.h>
#include <streams.h>
#include <strsafe.h>
#include <qnetwork.h>
#include <initguid.h> // declares DEFINE_GUID to declare an EXTERN_C const.
#include "audioswitch.h"
// Implements the CAudioSwitchRenderer class
CAudioSwitchRenderer::CAudioSwitchRenderer(REFCLSID RenderClass, // CLSID for this renderer
TCHAR *pName, // Debug ONLY description
LPUNKNOWN pUnk, // Aggregated owner object
HRESULT *phr) : // General OLE return code
CBaseFilter(pName, pUnk, &m_InterfaceLock, RenderClass),
m_evComplete(TRUE),
m_bAbort(FALSE),
m_pPosition(NULL),
m_ThreadSignal(TRUE),
m_bStreaming(FALSE),
m_bEOS(FALSE),
m_bEOSDelivered(FALSE),
m_dwAdvise(0),
m_pQSink(NULL),
m_bRepaintStatus(TRUE),
m_SignalTime(0),
m_bInReceive(FALSE),
m_EndOfStreamTimer(0),
m_inputSelected(0)
{
for (int i = 0;i < 16;i++) m_pInputPin[i] = NULL;
for (int i = 0;i < 16;i++) m_pMediaSample[i] = NULL;
Ready();
#ifdef PERF
m_idBaseStamp = MSR_REGISTER("BaseRenderer: sample time stamp");
m_idBaseRenderTime = MSR_REGISTER("BaseRenderer: draw time (msec)");
m_idBaseAccuracy = MSR_REGISTER("BaseRenderer: Accuracy (msec)");
#endif
}
// Delete the dynamically allocated IMediaPosition and IMediaSeeking helper
// object. The object is created when somebody queries us. These are standard
// control interfaces for seeking and setting start/stop positions and rates.
// We will probably also have made an input pin based on CAudioSwitchRendererInputPin
// that has to be deleted, it's created when an enumerator calls our GetPin
CAudioSwitchRenderer::~CAudioSwitchRenderer()
{
ASSERT(m_bStreaming == FALSE);
ASSERT(m_EndOfStreamTimer == 0);
StopStreaming();
ClearPendingSample();
// Delete any IMediaPosition implementation
if (m_pPosition)
{
delete m_pPosition;
m_pPosition = NULL;
}
// Delete any input pin created
for (int i = 0;i < 16;i++)
{
if (m_pInputPin[i])
{
delete m_pInputPin[i];
m_pInputPin[i] = NULL;
}
}
// Release any Quality sink
ASSERT(m_pQSink == NULL);
}
// This returns the IMediaPosition and IMediaSeeking interfaces
HRESULT CAudioSwitchRenderer::GetMediaPositionInterface(REFIID riid, void **ppv)
{
CAutoLock cRendererLock(&m_InterfaceLock);
if (m_pPosition)
{
return m_pPosition->NonDelegatingQueryInterface(riid, ppv);
}
HRESULT hr = NOERROR;
// Create implementation of this dynamically since sometimes we may
// never try and do a seek. The helper object implements a position
// control interface (IMediaPosition) which in fact simply takes the
// calls normally from the filter graph and passes them upstream
m_pPosition = new CRendererPosPassThru(NAME("Renderer CPosPassThru"),
CBaseFilter::GetOwner(),
(HRESULT *) & hr,
GetPin(m_inputSelected));
if (m_pPosition == NULL)
{
return E_OUTOFMEMORY;
}
if (FAILED(hr))
{
delete m_pPosition;
m_pPosition = NULL;
return E_NOINTERFACE;
}
return GetMediaPositionInterface(riid, ppv);
}
// Overriden to say what interfaces we support and where
STDMETHODIMP CAudioSwitchRenderer::NonDelegatingQueryInterface(REFIID riid, void **ppv)
{
// Do we have this interface
if (riid == IID_IMediaPosition || riid == IID_IMediaSeeking)
{
return GetMediaPositionInterface(riid, ppv);
}
else
{
return CBaseFilter::NonDelegatingQueryInterface(riid, ppv);
}
}
// This is called whenever we change states, we have a manual reset event that
// is signalled whenever we don't won't the source filter thread to wait in us
// (such as in a stopped state) and likewise is not signalled whenever it can
// wait (during paused and running) this function sets or resets the thread
// event. The event is used to stop source filter threads waiting in Receive
HRESULT CAudioSwitchRenderer::SourceThreadCanWait(BOOL bCanWait)
{
if (bCanWait == TRUE)
{
m_ThreadSignal.Reset();
}
else
{
m_ThreadSignal.Set();
}
return NOERROR;
}
#ifdef DEBUG
// Dump the current renderer state to the debug terminal. The hardest part of
// the renderer is the window where we unlock everything to wait for a clock
// to signal it is time to draw or for the application to cancel everything
// by stopping the filter. If we get things wrong we can leave the thread in
// WaitForRenderTime with no way for it to ever get out and we will deadlock
void CAudioSwitchRenderer::DisplayRendererState()
{
DbgLog((LOG_TIMING, 1, TEXT("\nTimed out in WaitForRenderTime")));
// No way should this be signalled at this point
BOOL bSignalled = m_ThreadSignal.Check();
DbgLog((LOG_TIMING, 1, TEXT("Signal sanity check %d"), bSignalled));
// Now output the current renderer state variables
DbgLog((LOG_TIMING, 1, TEXT("Filter state %d"), m_State));
DbgLog((LOG_TIMING, 1, TEXT("Abort flag %d"), m_bAbort));
DbgLog((LOG_TIMING, 1, TEXT("Streaming flag %d"), m_bStreaming));
DbgLog((LOG_TIMING, 1, TEXT("Clock advise link %d"), m_dwAdvise));
DbgLog((LOG_TIMING, 1, TEXT("Current media sample %x"), m_pMediaSample[m_inputSelected]));
DbgLog((LOG_TIMING, 1, TEXT("EOS signalled %d"), m_bEOS));
DbgLog((LOG_TIMING, 1, TEXT("EOS delivered %d"), m_bEOSDelivered));
DbgLog((LOG_TIMING, 1, TEXT("Repaint status %d"), m_bRepaintStatus));
// Output the delayed end of stream timer information
DbgLog((LOG_TIMING, 1, TEXT("End of stream timer %x"), m_EndOfStreamTimer));
DbgLog((LOG_TIMING, 1, TEXT("Deliver time %s"), CDisp((LONGLONG)m_SignalTime)));
// Should never timeout during a flushing state
BOOL bFlushing = m_pInputPin[m_inputSelected]->IsFlushing();
DbgLog((LOG_TIMING, 1, TEXT("Flushing sanity check %d"), bFlushing));
// Display the time we were told to start at
DbgLog((LOG_TIMING, 1, TEXT("Last run time %s"), CDisp((LONGLONG)m_tStart.m_time)));
// Have we got a reference clock
if (m_pClock == NULL) return ;
// Get the current time from the wall clock
CRefTime CurrentTime, StartTime, EndTime;
m_pClock->GetTime((REFERENCE_TIME*) &CurrentTime);
CRefTime Offset = CurrentTime - m_tStart;
// Display the current time from the clock
DbgLog((LOG_TIMING, 1, TEXT("Clock time %s"), CDisp((LONGLONG)CurrentTime.m_time)));
DbgLog((LOG_TIMING, 1, TEXT("Time difference %dms"), Offset.Millisecs()));
// Do we have a sample ready to render
if (m_pMediaSample[m_inputSelected] == NULL) return ;
m_pMediaSample[m_inputSelected]->GetTime((REFERENCE_TIME*)&StartTime, (REFERENCE_TIME*)&EndTime);
DbgLog((LOG_TIMING, 1, TEXT("Next sample stream times (Start %d End %d ms)"),
StartTime.Millisecs(), EndTime.Millisecs()));
// Calculate how long it is until it is due for rendering
CRefTime Wait = (m_tStart + StartTime) - CurrentTime;
DbgLog((LOG_TIMING, 1, TEXT("Wait required %d ms"), Wait.Millisecs()));
}
#endif
// Wait until the clock sets the timer event or we're otherwise signalled. We
// set an arbitrary timeout for this wait and if it fires then we display the
// current renderer state on the debugger. It will often fire if the filter's
// left paused in an application however it may also fire during stress tests
// if the synchronisation with application seeks and state changes is faulty
#define RENDER_TIMEOUT 10000
HRESULT CAudioSwitchRenderer::WaitForRenderTime()
{
HANDLE WaitObjects[] = { m_ThreadSignal, m_RenderEvent };
DWORD Result = WAIT_TIMEOUT;
// Wait for either the time to arrive or for us to be stopped
OnWaitStart();
while (Result == WAIT_TIMEOUT)
{
Result = WaitForMultipleObjects(2, WaitObjects, FALSE, RENDER_TIMEOUT);
#ifdef DEBUG
if (Result == WAIT_TIMEOUT) DisplayRendererState();
#endif
}
OnWaitEnd();
// We may have been awoken without the timer firing
if (Result == WAIT_OBJECT_0)
{
return VFW_E_STATE_CHANGED;
}
SignalTimerFired();
return NOERROR;
}
// Poll waiting for Receive to complete. This really matters when
// Receive may set the palette and cause window messages
// The problem is that if we don't really wait for a renderer to
// stop processing we can deadlock waiting for a transform which
// is calling the renderer's Receive() method because the transform's
// Stop method doesn't know to process window messages to unblock
// the renderer's Receive processing
void CAudioSwitchRenderer::WaitForReceiveToComplete()
{
for (;;)
{
if (!m_bInReceive)
{
break;
}
MSG msg;
// Receive all interthread snedmessages
PeekMessage(&msg, NULL, WM_NULL, WM_NULL, PM_NOREMOVE);
Sleep(1);
}
// If the wakebit for QS_POSTMESSAGE is set, the PeekMessage call
// above just cleared the changebit which will cause some messaging
// calls to block (waitMessage, MsgWaitFor...) now.
// Post a dummy message to set the QS_POSTMESSAGE bit again
if (HIWORD(GetQueueStatus(QS_POSTMESSAGE)) & QS_POSTMESSAGE)
{
// Send dummy message
PostThreadMessage(GetCurrentThreadId(), WM_NULL, 0, 0);
}
}
// A filter can have four discrete states, namely Stopped, Running, Paused,
// Intermediate. We are in an intermediate state if we are currently trying
// to pause but haven't yet got the first sample (or if we have been flushed
// in paused state and therefore still have to wait for a sample to arrive)
// This class contains an event called m_evComplete which is signalled when
// the current state is completed and is not signalled when we are waiting to
// complete the last state transition. As mentioned above the only time we
// use this at the moment is when we wait for a media sample in paused state
// If while we are waiting we receive an end of stream notification from the
// source filter then we know no data is imminent so we can reset the event
// This means that when we transition to paused the source filter must call
// end of stream on us or send us an image otherwise we'll hang indefinately
// Simple internal way of getting the real state
FILTER_STATE CAudioSwitchRenderer::GetRealState()
{
return m_State;
}
// The renderer doesn't complete the full transition to paused states until
// it has got one media sample to render. If you ask it for its state while
// it's waiting it will return the state along with VFW_S_STATE_INTERMEDIATE
STDMETHODIMP CAudioSwitchRenderer::GetState(DWORD dwMSecs, FILTER_STATE *State)
{
CheckPointer(State, E_POINTER);
if (WaitDispatchingMessages(m_evComplete, dwMSecs) == WAIT_TIMEOUT)
{
*State = m_State;
return VFW_S_STATE_INTERMEDIATE;
}
*State = m_State;
return NOERROR;
}
// If we're pausing and we have no samples we don't complete the transition
// to State_Paused and we return S_FALSE. However if the m_bAbort flag has
// been set then all samples are rejected so there is no point waiting for
// one. If we do have a sample then return NOERROR. We will only ever return
// VFW_S_STATE_INTERMEDIATE from GetState after being paused with no sample
// (calling GetState after either being stopped or Run will NOT return this)
HRESULT CAudioSwitchRenderer::CompleteStateChange(FILTER_STATE OldState)
{
// Allow us to be paused when disconnected
if (m_pInputPin[m_inputSelected]->IsConnected() == FALSE)
{
Ready();
return S_OK;
}
// Have we run off the end of stream
if (IsEndOfStream() == TRUE)
{
Ready();
return S_OK;
}
// Make sure we get fresh data after being stopped
if (HaveCurrentSample() == TRUE)
{
if (OldState != State_Stopped)
{
Ready();
return S_OK;
}
}
NotReady();
return S_FALSE;
}
// When we stop the filter the things we do are:-
// Decommit the allocator being used in the connection
// Release the source filter if it's waiting in Receive
// Cancel any advise link we set up with the clock
// Any end of stream signalled is now obsolete so reset
// Allow us to be stopped when we are not connected
STDMETHODIMP CAudioSwitchRenderer::Stop()
{
CAutoLock cRendererLock(&m_InterfaceLock);
// Make sure there really is a state change
if (m_State == State_Stopped)
{
return NOERROR;
}
// Is our input pin connected
if (m_pInputPin[m_inputSelected]->IsConnected() == FALSE)
{
NOTE("Input pin is not connected");
m_State = State_Stopped;
return NOERROR;
}
CBaseFilter::Stop();
// If we are going into a stopped state then we must decommit whatever
// allocator we are using it so that any source filter waiting in the
// GetBuffer can be released and unlock themselves for a state change
if (m_pInputPin[m_inputSelected]->Allocator())
{
m_pInputPin[m_inputSelected]->Allocator()->Decommit();
}
// Cancel any scheduled rendering
SetRepaintStatus(TRUE);
StopStreaming();
SourceThreadCanWait(FALSE);
ResetEndOfStream();
CancelNotification();
// There should be no outstanding clock advise
ASSERT(CancelNotification() == S_FALSE);
ASSERT(WAIT_TIMEOUT == WaitForSingleObject((HANDLE)m_RenderEvent, 0));
ASSERT(m_EndOfStreamTimer == 0);
Ready();
WaitForReceiveToComplete();
m_bAbort = FALSE;
return NOERROR;
}
// When we pause the filter the things we do are:-
// Commit the allocator being used in the connection
// Allow a source filter thread to wait in Receive
// Cancel any clock advise link (we may be running)
// Possibly complete the state change if we have data
// Allow us to be paused when we are not connected
STDMETHODIMP CAudioSwitchRenderer::Pause()
{
CAutoLock cRendererLock(&m_InterfaceLock);
FILTER_STATE OldState = m_State;
ASSERT(m_pInputPin[m_inputSelected]->IsFlushing() == FALSE);
// Make sure there really is a state change
if (m_State == State_Paused)
{
return CompleteStateChange(State_Paused);
}
// Has our input pin been connected
if (m_pInputPin[m_inputSelected]->IsConnected() == FALSE)
{
NOTE("Input pin is not connected");
m_State = State_Paused;
return CompleteStateChange(State_Paused);
}
// Pause the base filter class
HRESULT hr = CBaseFilter::Pause();
if (FAILED(hr))
{
NOTE("Pause failed");
return hr;
}
// Enable EC_REPAINT events again
SetRepaintStatus(TRUE);
StopStreaming();
SourceThreadCanWait(TRUE);
CancelNotification();
ResetEndOfStreamTimer();
// If we are going into a paused state then we must commit whatever
// allocator we are using it so that any source filter can call the
// GetBuffer and expect to get a buffer without returning an error
if (m_pInputPin[m_inputSelected]->Allocator())
{
m_pInputPin[m_inputSelected]->Allocator()->Commit();
}
// There should be no outstanding advise
ASSERT(CancelNotification() == S_FALSE);
ASSERT(WAIT_TIMEOUT == WaitForSingleObject((HANDLE)m_RenderEvent, 0));
ASSERT(m_EndOfStreamTimer == 0);
ASSERT(m_pInputPin[m_inputSelected]->IsFlushing() == FALSE);
// When we come out of a stopped state we must clear any image we were
// holding onto for frame refreshing. Since renderers see state changes
// first we can reset ourselves ready to accept the source thread data
// Paused or running after being stopped causes the current position to
// be reset so we're not interested in passing end of stream signals
if (OldState == State_Stopped)
{
m_bAbort = FALSE;
ClearPendingSample();
}
return CompleteStateChange(OldState);
}
// When we run the filter the things we do are:-
// Commit the allocator being used in the connection
// Allow a source filter thread to wait in Receive
// Signal the render event just to get us going
// Start the base class by calling StartStreaming
// Allow us to be run when we are not connected
// Signal EC_COMPLETE if we are not connected
STDMETHODIMP CAudioSwitchRenderer::Run(REFERENCE_TIME StartTime)
{
CAutoLock cRendererLock(&m_InterfaceLock);
FILTER_STATE OldState = m_State;
// Make sure there really is a state change
if (m_State == State_Running)
{
return NOERROR;
}
// Send EC_COMPLETE if we're not connected
if (m_pInputPin[m_inputSelected]->IsConnected() == FALSE)
{
NotifyEvent(EC_COMPLETE, S_OK, (LONG_PTR)(IBaseFilter *)this);
m_State = State_Running;
return NOERROR;
}
Ready();
// Pause the base filter class
HRESULT hr = CBaseFilter::Run(StartTime);
if (FAILED(hr))
{
NOTE("Run failed");
return hr;
}
// Allow the source thread to wait
ASSERT(m_pInputPin[m_inputSelected]->IsFlushing() == FALSE);
SourceThreadCanWait(TRUE);
SetRepaintStatus(FALSE);
// There should be no outstanding advise
ASSERT(CancelNotification() == S_FALSE);
ASSERT(WAIT_TIMEOUT == WaitForSingleObject((HANDLE)m_RenderEvent, 0));
ASSERT(m_EndOfStreamTimer == 0);
ASSERT(m_pInputPin[m_inputSelected]->IsFlushing() == FALSE);
// If we are going into a running state then we must commit whatever
// allocator we are using it so that any source filter can call the
// GetBuffer and expect to get a buffer without returning an error
if (m_pInputPin[m_inputSelected]->Allocator())
{
m_pInputPin[m_inputSelected]->Allocator()->Commit();
}
// When we come out of a stopped state we must clear any image we were
// holding onto for frame refreshing. Since renderers see state changes
// first we can reset ourselves ready to accept the source thread data
// Paused or running after being stopped causes the current position to
// be reset so we're not interested in passing end of stream signals
if (OldState == State_Stopped)
{
m_bAbort = FALSE;
ClearPendingSample();
}
return StartStreaming();
}
// Return the number of input pins we support
int CAudioSwitchRenderer::GetPinCount()
{
return 16;
}
// We only support one input pin and it is numbered zero
CBasePin *CAudioSwitchRenderer::GetPin(int n)
{
CAutoLock cRendererLock(&m_InterfaceLock);
HRESULT hr = NOERROR;
ASSERT(n < 16 && n >= 0);
// Should only ever be called with zero
if (n > 16)
{
return NULL;
}
// Create the input pin if not already done so
if (m_pInputPin[n] == NULL)
{
WCHAR t[256] = {0};
StringCchPrintfW(t, 256, L"In%d", n);
m_pInputPin[n] = new CAudioSwitchRendererInputPin(this, &hr, t);
}
return m_pInputPin[n];
}
// If "In" then return the IPin for our input pin, otherwise NULL and error
STDMETHODIMP CAudioSwitchRenderer::FindPin(LPCWSTR Id, IPin **ppPin)
{
CheckPointer(ppPin, E_POINTER);
int gotit = 0;
for (int i = 0;i < 16;i++)
{
WCHAR t[256] = {0};
StringCchPrintfW(t, 256, L"In%d", i);
if (0 == lstrcmpW(Id, t))
{
gotit = 1;
*ppPin = GetPin(i);
ASSERT(*ppPin);
(*ppPin)->AddRef();
}
}
if (!gotit)
{
*ppPin = NULL;
return VFW_E_NOT_FOUND;
}
return NOERROR;
}
// Called when the input pin receives an EndOfStream notification. If we have
// not got a sample, then notify EC_COMPLETE now. If we have samples, then set
// m_bEOS and check for this on completing samples. If we're waiting to pause
// then complete the transition to paused state by setting the state event
HRESULT CAudioSwitchRenderer::EndOfStream()
{
// Ignore these calls if we are stopped
if (m_State == State_Stopped)
{
return NOERROR;
}
// If we have a sample then wait for it to be rendered
m_bEOS = TRUE;
if (m_pMediaSample[m_inputSelected])
{
return NOERROR;
}
// If we are waiting for pause then we are now ready since we cannot now
// carry on waiting for a sample to arrive since we are being told there
// won't be any. This sets an event that the GetState function picks up
Ready();
// Only signal completion now if we are running otherwise queue it until
// we do run in StartStreaming. This is used when we seek because a seek
// causes a pause where early notification of completion is misleading
if (m_bStreaming)
{
SendEndOfStream();
}
return NOERROR;
}
// When we are told to flush we should release the source thread
HRESULT CAudioSwitchRenderer::BeginFlush()
{
// If paused then report state intermediate until we get some data
if (m_State == State_Paused)
{
NotReady();
}
SourceThreadCanWait(FALSE);
CancelNotification();
ClearPendingSample();
// Wait for Receive to complete
WaitForReceiveToComplete();
return NOERROR;
}
// After flushing the source thread can wait in Receive again
HRESULT CAudioSwitchRenderer::EndFlush()
{
// Reset the current sample media time
if (m_pPosition) m_pPosition->ResetMediaTime();
// There should be no outstanding advise
ASSERT(CancelNotification() == S_FALSE);
SourceThreadCanWait(TRUE);
return NOERROR;
}
// We can now send EC_REPAINTs if so required
HRESULT CAudioSwitchRenderer::CompleteConnect(IPin *pReceivePin)
{
SetRepaintStatus(TRUE);
m_bAbort = FALSE;
return NOERROR;
}
// Called when we go paused or running
HRESULT CAudioSwitchRenderer::Active()
{
return NOERROR;
}
// Called when we go into a stopped state
HRESULT CAudioSwitchRenderer::Inactive()
{
if (m_pPosition)
{
m_pPosition->ResetMediaTime();
}
// People who derive from this may want to override this behaviour
// to keep hold of the sample in some circumstances
ClearPendingSample();
return NOERROR;
}
// Tell derived classes about the media type agreed
HRESULT CAudioSwitchRenderer::SetMediaType(const CMediaType *pmt)
{
return NOERROR;
}
// When we break the input pin connection we should reset the EOS flags. When
// we are asked for either IMediaPosition or IMediaSeeking we will create a
// CPosPassThru object to handles media time pass through. When we're handed
// samples we store (by calling CPosPassThru::RegisterMediaTime) their media
// times so we can then return a real current position of data being rendered
HRESULT CAudioSwitchRenderer::BreakConnect()
{
// Do we have a quality management sink
if (m_pQSink)
{
m_pQSink->Release();
m_pQSink = NULL;
}
// Check we have a valid connection
int n = 0;
for (int i = 0;i < 16;i++)
{
if (!m_pInputPin[i] || m_pInputPin[i]->IsConnected() == FALSE) { n++; continue; }
// Check we are stopped before disconnecting
if (m_State != State_Stopped && !m_pInputPin[i]->CanReconnectWhenActive())
{
return VFW_E_NOT_STOPPED;
}
}
if (n == 16) return S_FALSE;
SetRepaintStatus(FALSE);
ResetEndOfStream();
ClearPendingSample();
m_bAbort = FALSE;
return NOERROR;
}
// Retrieves the sample times for this samples (note the sample times are
// passed in by reference not value). We return S_FALSE to say schedule this
// sample according to the times on the sample. We also return S_OK in
// which case the object should simply render the sample data immediately
HRESULT CAudioSwitchRenderer::GetSampleTimes(IMediaSample *pMediaSample,
REFERENCE_TIME *pStartTime,
REFERENCE_TIME *pEndTime)
{
ASSERT(m_dwAdvise == 0);
ASSERT(pMediaSample);
// If the stop time for this sample is before or the same as start time,
// then just ignore it (release it) and schedule the next one in line
// Source filters should always fill in the start and end times properly!
if (SUCCEEDED(pMediaSample->GetTime(pStartTime, pEndTime)))
{
if (*pEndTime < *pStartTime)
{
return VFW_E_START_TIME_AFTER_END;
}
}
else
{
// no time set in the sample... draw it now?
return S_OK;
}
// Can't synchronise without a clock so we return S_OK which tells the
// caller that the sample should be rendered immediately without going
// through the overhead of setting a timer advise link with the clock
if (m_pClock == NULL)
{
return S_OK;
}
return ShouldDrawSampleNow(pMediaSample, pStartTime, pEndTime);
}
// By default all samples are drawn according to their time stamps so we
// return S_FALSE. Returning S_OK means draw immediately, this is used
// by the derived video renderer class in its quality management.
HRESULT CAudioSwitchRenderer::ShouldDrawSampleNow(IMediaSample *pMediaSample,
REFERENCE_TIME *ptrStart,
REFERENCE_TIME *ptrEnd)
{
return S_FALSE;
}
// We must always reset the current advise time to zero after a timer fires
// because there are several possible ways which lead us not to do any more
// scheduling such as the pending image being cleared after state changes
void CAudioSwitchRenderer::SignalTimerFired()
{
m_dwAdvise = 0;
}
// Cancel any notification currently scheduled. This is called by the owning
// window object when it is told to stop streaming. If there is no timer link
// outstanding then calling this is benign otherwise we go ahead and cancel
// We must always reset the render event as the quality management code can
// signal immediate rendering by setting the event without setting an advise
// link. If we're subsequently stopped and run the first attempt to setup an
// advise link with the reference clock will find the event still signalled
HRESULT CAudioSwitchRenderer::CancelNotification()
{
ASSERT(m_dwAdvise == 0 || m_pClock);
DWORD_PTR dwAdvise = m_dwAdvise;
// Have we a live advise link
if (m_dwAdvise)
{
m_pClock->Unadvise(m_dwAdvise);
SignalTimerFired();
ASSERT(m_dwAdvise == 0);
}
// Clear the event and return our status
m_RenderEvent.Reset();
return (dwAdvise ? S_OK : S_FALSE);
}
// Responsible for setting up one shot advise links with the clock
// Return FALSE if the sample is to be dropped (not drawn at all)
// Return TRUE if the sample is to be drawn and in this case also
// arrange for m_RenderEvent to be set at the appropriate time
BOOL CAudioSwitchRenderer::ScheduleSample(IMediaSample *pMediaSample)
{
REFERENCE_TIME StartSample, EndSample;
// Is someone pulling our leg
if (pMediaSample == NULL)
{
return FALSE;
}
// Get the next sample due up for rendering. If there aren't any ready
// then GetNextSampleTimes returns an error. If there is one to be done
// then it succeeds and yields the sample times. If it is due now then
// it returns S_OK other if it's to be done when due it returns S_FALSE
HRESULT hr = GetSampleTimes(pMediaSample, &StartSample, &EndSample);
if (FAILED(hr))
{
return FALSE;
}
// If we don't have a reference clock then we cannot set up the advise
// time so we simply set the event indicating an image to render. This
// will cause us to run flat out without any timing or synchronisation
if (hr == S_OK)
{
EXECUTE_ASSERT(SetEvent((HANDLE) m_RenderEvent));
return TRUE;
}
ASSERT(m_dwAdvise == 0);
ASSERT(m_pClock);
ASSERT(WAIT_TIMEOUT == WaitForSingleObject((HANDLE)m_RenderEvent, 0));
// We do have a valid reference clock interface so we can ask it to
// set an event when the image comes due for rendering. We pass in
// the reference time we were told to start at and also the current
// stream time which is the offset from the start reference time
hr = m_pClock->AdviseTime(
(REFERENCE_TIME) m_tStart, // Start run time
StartSample, // Stream time
(HEVENT)(HANDLE) m_RenderEvent, // Render notification
&m_dwAdvise); // Advise cookie
if (SUCCEEDED(hr))
{
return TRUE;
}
// We could not schedule the next sample for rendering despite the fact
// we have a valid sample here. This is a fair indication that either
// the system clock is wrong or the time stamp for the sample is duff
ASSERT(m_dwAdvise == 0);
return FALSE;
}
// This is called when a sample comes due for rendering. We pass the sample
// on to the derived class. After rendering we will initialise the timer for
// the next sample, NOTE signal that the last one fired first, if we don't
// do this it thinks there is still one outstanding that hasn't completed
HRESULT CAudioSwitchRenderer::Render(IMediaSample *pMediaSample)
{
// If the media sample is NULL then we will have been notified by the
// clock that another sample is ready but in the mean time someone has
// stopped us streaming which causes the next sample to be released
if (pMediaSample == NULL)
{
return S_FALSE;
}
// If we have stopped streaming then don't render any more samples, the
// thread that got in and locked us and then reset this flag does not
// clear the pending sample as we can use it to refresh any output device
if (m_bStreaming == FALSE)
{
return S_FALSE;
}
// Time how long the rendering takes
OnRenderStart(pMediaSample);
DoRenderSample(pMediaSample);
OnRenderEnd(pMediaSample);
return NOERROR;
}
// Checks if there is a sample waiting at the renderer
BOOL CAudioSwitchRenderer::HaveCurrentSample()
{
CAutoLock cRendererLock(&m_RendererLock);
return (m_pMediaSample[m_inputSelected] == NULL ? FALSE : TRUE);
}
// Returns the current sample waiting at the video renderer. We AddRef the
// sample before returning so that should it come due for rendering the
// person who called this method will hold the remaining reference count
// that will stop the sample being added back onto the allocator free list
IMediaSample *CAudioSwitchRenderer::GetCurrentSample()
{
CAutoLock cRendererLock(&m_RendererLock);
if (m_pMediaSample[m_inputSelected])
{
m_pMediaSample[m_inputSelected]->AddRef();
}
return m_pMediaSample[m_inputSelected];
}
// Called when the source delivers us a sample. We go through a few checks to
// make sure the sample can be rendered. If we are running (streaming) then we
// have the sample scheduled with the reference clock, if we are not streaming
// then we have received an sample in paused mode so we can complete any state
// transition. On leaving this function everything will be unlocked so an app
// thread may get in and change our state to stopped (for example) in which
// case it will also signal the thread event so that our wait call is stopped
HRESULT CAudioSwitchRenderer::PrepareReceive(IMediaSample *pMediaSample)
{
CAutoLock cRendererLock(&m_InterfaceLock);
m_bInReceive = TRUE;
// Check our flushing and filter state
HRESULT hr = m_pInputPin[m_inputSelected]->CBaseInputPin::Receive(pMediaSample);
if (hr != NOERROR)
{
m_bInReceive = FALSE;
return E_FAIL;
}
// Has the type changed on a media sample. We do all rendering
// synchronously on the source thread, which has a side effect
// that only one buffer is ever outstanding. Therefore when we
// have Receive called we can go ahead and change the format
// Since the format change can cause a SendMessage we just don't
// lock
if (m_pInputPin[m_inputSelected]->SampleProps()->pMediaType)
{
m_pInputPin[m_inputSelected]->SetMediaType((CMediaType *)m_pInputPin[m_inputSelected]->SampleProps()->pMediaType);
}
CAutoLock cSampleLock(&m_RendererLock);
ASSERT(IsActive() == TRUE);
ASSERT(m_pInputPin[m_inputSelected]->IsFlushing() == FALSE);
ASSERT(m_pInputPin[m_inputSelected]->IsConnected() == TRUE);
ASSERT(m_pMediaSample[m_inputSelected] == NULL);
// Return an error if we already have a sample waiting for rendering
// source pins must serialise the Receive calls - we also check that
// no data is being sent after the source signalled an end of stream
if (m_pMediaSample[m_inputSelected] || m_bEOS || m_bAbort)
{
Ready();
m_bInReceive = FALSE;
return E_UNEXPECTED;
}
// Store the media times from this sample
if (m_pPosition) m_pPosition->RegisterMediaTime(pMediaSample);
// Schedule the next sample if we are streaming
if ((m_bStreaming == TRUE) && (ScheduleSample(pMediaSample) == FALSE))
{
ASSERT(WAIT_TIMEOUT == WaitForSingleObject((HANDLE)m_RenderEvent, 0));
ASSERT(CancelNotification() == S_FALSE);
m_bInReceive = FALSE;
return VFW_E_SAMPLE_REJECTED;
}
// Store the sample end time for EC_COMPLETE handling
m_SignalTime = m_pInputPin[m_inputSelected]->SampleProps()->tStop;
// BEWARE we sometimes keep the sample even after returning the thread to
// the source filter such as when we go into a stopped state (we keep it
// to refresh the device with) so we must AddRef it to keep it safely. If
// we start flushing the source thread is released and any sample waiting
// will be released otherwise GetBuffer may never return (see BeginFlush)
m_pMediaSample[m_inputSelected] = pMediaSample;
m_pMediaSample[m_inputSelected]->AddRef();
if (m_bStreaming == FALSE)
{
SetRepaintStatus(TRUE);
}
return NOERROR;
}
// Called by the source filter when we have a sample to render. Under normal
// circumstances we set an advise link with the clock, wait for the time to
// arrive and then render the data using the PURE virtual DoRenderSample that
// the derived class will have overriden. After rendering the sample we may
// also signal EOS if it was the last one sent before EndOfStream was called
HRESULT CAudioSwitchRenderer::Receive(IMediaSample *pSample)
{
ASSERT(pSample);
// It may return VFW_E_SAMPLE_REJECTED code to say don't bother
HRESULT hr = PrepareReceive(pSample);
ASSERT(m_bInReceive == SUCCEEDED(hr));
if (FAILED(hr))
{
if (hr == VFW_E_SAMPLE_REJECTED)
{
return NOERROR;
}
return hr;
}
// We realize the palette in "PrepareRender()" so we have to give away the
// filter lock here.
if (m_State == State_Paused)
{
PrepareRender();
// no need to use InterlockedExchange
m_bInReceive = FALSE;
{
// We must hold both these locks
CAutoLock cRendererLock(&m_InterfaceLock);
if (m_State == State_Stopped)
return NOERROR;
m_bInReceive = TRUE;
}
Ready();
}
// Having set an advise link with the clock we sit and wait. We may be
// awoken by the clock firing or by a state change. The rendering call
// will lock the critical section and check we can still render the data
hr = WaitForRenderTime();
if (FAILED(hr))
{
m_bInReceive = FALSE;
return NOERROR;
}
PrepareRender();
// Set this here and poll it until we work out the locking correctly
// It can't be right that the streaming stuff grabs the interface
// lock - after all we want to be able to wait for this stuff
// to complete
m_bInReceive = FALSE;
// We must hold both these locks
CAutoLock cRendererLock(&m_InterfaceLock);
// since we gave away the filter wide lock, the sate of the filter could
// have chnaged to Stopped
if (m_State == State_Stopped)
return NOERROR;
CAutoLock cSampleLock(&m_RendererLock);
// Deal with this sample
Render(m_pMediaSample[m_inputSelected]);
ClearPendingSample();
SendEndOfStream();
CancelNotification();
return NOERROR;
}
// This is called when we stop or are inactivated to clear the pending sample
// We release the media sample interface so that they can be allocated to the
// source filter again, unless of course we are changing state to inactive in
// which case GetBuffer will return an error. We must also reset the current
// media sample to NULL so that we know we do not currently have an image
HRESULT CAudioSwitchRenderer::ClearPendingSample()
{
CAutoLock cRendererLock(&m_RendererLock);
for (int i = 0;i < 16;i++)
{
if (m_pMediaSample[i])
{
m_pMediaSample[i]->Release();
m_pMediaSample[i] = NULL;
}
}
return NOERROR;
}
// Do the timer callback work
void CAudioSwitchRenderer::TimerCallback()
{
// Lock for synchronization (but don't hold this lock when calling
// timeKillEvent)
CAutoLock cRendererLock(&m_RendererLock);
// See if we should signal end of stream now
if (m_EndOfStreamTimer)
{
m_EndOfStreamTimer = 0;
SendEndOfStream();
}
}
// If we are at the end of the stream signal the filter graph but do not set
// the state flag back to FALSE. Once we drop off the end of the stream we
// leave the flag set (until a subsequent ResetEndOfStream). Each sample we
// get delivered will update m_SignalTime to be the last sample's end time.
// We must wait this long before signalling end of stream to the filtergraph
#define TIMEOUT_DELIVERYWAIT 50
#define TIMEOUT_RESOLUTION 10
HRESULT CAudioSwitchRenderer::SendEndOfStream()
{
ASSERT(CritCheckIn(&m_RendererLock));
if (m_bEOS == FALSE || m_bEOSDelivered || m_EndOfStreamTimer)
{
return NOERROR;
}
// If there is no clock then signal immediately
if (m_pClock == NULL)
{
return NotifyEndOfStream();
}
// How long into the future is the delivery time
REFERENCE_TIME Signal = m_tStart + m_SignalTime;
REFERENCE_TIME CurrentTime;
m_pClock->GetTime(&CurrentTime);
LONG Delay = LONG((Signal - CurrentTime) / 10000);
// Dump the timing information to the debugger
NOTE1("Delay until end of stream delivery %d", Delay);
NOTE1("Current %s", (LPCTSTR)CDisp((LONGLONG)CurrentTime));
NOTE1("Signal %s", (LPCTSTR)CDisp((LONGLONG)Signal));
// Wait for the delivery time to arrive
if (Delay < TIMEOUT_DELIVERYWAIT)
{
return NotifyEndOfStream();
}
// Signal a timer callback on another worker thread
m_EndOfStreamTimer = timeSetEvent((UINT) Delay, // Period of timer
TIMEOUT_RESOLUTION, // Timer resolution
EndOfStreamTimer, // Callback function
DWORD_PTR(this), // Used information
TIME_ONESHOT); // Type of callback
if (m_EndOfStreamTimer == 0)
{
return NotifyEndOfStream();
}
return NOERROR;
}
// Signals EC_COMPLETE to the filtergraph manager
HRESULT CAudioSwitchRenderer::NotifyEndOfStream()
{
CAutoLock cRendererLock(&m_RendererLock);
ASSERT(m_bEOS == TRUE);
ASSERT(m_bEOSDelivered == FALSE);
ASSERT(m_EndOfStreamTimer == 0);
// Has the filter changed state
if (m_bStreaming == FALSE)
{
ASSERT(m_EndOfStreamTimer == 0);
return NOERROR;
}
// Reset the end of stream timer
m_EndOfStreamTimer = 0;
// If we've been using the IMediaPosition interface, set it's start
// and end media "times" to the stop position by hand. This ensures
// that we actually get to the end, even if the MPEG guestimate has
// been bad or if the quality management dropped the last few frames
if (m_pPosition) m_pPosition->EOS();
m_bEOSDelivered = TRUE;
NOTE("Sending EC_COMPLETE...");
return NotifyEvent(EC_COMPLETE, S_OK, (LONG_PTR)(IBaseFilter *)this);
}
// Reset the end of stream flag, this is typically called when we transfer to
// stopped states since that resets the current position back to the start so
// we will receive more samples or another EndOfStream if there aren't any. We
// keep two separate flags one to say we have run off the end of the stream
// (this is the m_bEOS flag) and another to say we have delivered EC_COMPLETE
// to the filter graph. We need the latter otherwise we can end up sending an
// EC_COMPLETE every time the source changes state and calls our EndOfStream
HRESULT CAudioSwitchRenderer::ResetEndOfStream()
{
ResetEndOfStreamTimer();
CAutoLock cRendererLock(&m_RendererLock);
m_bEOS = FALSE;
m_bEOSDelivered = FALSE;
m_SignalTime = 0;
return NOERROR;
}
// Kills any outstanding end of stream timer
void CAudioSwitchRenderer::ResetEndOfStreamTimer()
{
ASSERT(CritCheckOut(&m_RendererLock));
if (m_EndOfStreamTimer)
{
timeKillEvent(m_EndOfStreamTimer);
m_EndOfStreamTimer = 0;
}
}
// This is called when we start running so that we can schedule any pending
// image we have with the clock and display any timing information. If we
// don't have any sample but we have queued an EOS flag then we send it. If
// we do have a sample then we wait until that has been rendered before we
// signal the filter graph otherwise we may change state before it's done
HRESULT CAudioSwitchRenderer::StartStreaming()
{
CAutoLock cRendererLock(&m_RendererLock);
if (m_bStreaming == TRUE)
{
return NOERROR;
}
// Reset the streaming times ready for running
m_bStreaming = TRUE;
timeBeginPeriod(1);
OnStartStreaming();
// There should be no outstanding advise
ASSERT(WAIT_TIMEOUT == WaitForSingleObject((HANDLE)m_RenderEvent, 0));
ASSERT(CancelNotification() == S_FALSE);
// If we have an EOS and no data then deliver it now
if (m_pMediaSample[m_inputSelected] == NULL)
{
return SendEndOfStream();
}
// Have the data rendered
ASSERT(m_pMediaSample[m_inputSelected]);
if (!ScheduleSample(m_pMediaSample[m_inputSelected]))
m_RenderEvent.Set();
return NOERROR;
}
// This is called when we stop streaming so that we can set our internal flag
// indicating we are not now to schedule any more samples arriving. The state
// change methods in the filter implementation take care of cancelling any
// clock advise link we have set up and clearing any pending sample we have
HRESULT CAudioSwitchRenderer::StopStreaming()
{
CAutoLock cRendererLock(&m_RendererLock);
m_bEOSDelivered = FALSE;
if (m_bStreaming == TRUE)
{
m_bStreaming = FALSE;
OnStopStreaming();
timeEndPeriod(1);
}
return NOERROR;
}
// We have a boolean flag that is reset when we have signalled EC_REPAINT to
// the filter graph. We set this when we receive an image so that should any
// conditions arise again we can send another one. By having a flag we ensure
// we don't flood the filter graph with redundant calls. We do not set the
// event when we receive an EndOfStream call since there is no point in us
// sending further EC_REPAINTs. In particular the AutoShowWindow method and
// the DirectDraw object use this method to control the window repainting
void CAudioSwitchRenderer::SetRepaintStatus(BOOL bRepaint)
{
CAutoLock cSampleLock(&m_RendererLock);
m_bRepaintStatus = bRepaint;
}
// Pass the window handle to the upstream filter
void CAudioSwitchRenderer::SendNotifyWindow(IPin *pPin, HWND hwnd)
{
IMediaEventSink *pSink;
// Does the pin support IMediaEventSink
HRESULT hr = pPin->QueryInterface(IID_IMediaEventSink, (void **) & pSink);
if (SUCCEEDED(hr))
{
pSink->Notify(EC_NOTIFY_WINDOW, LONG_PTR(hwnd), 0);
pSink->Release();
}
NotifyEvent(EC_NOTIFY_WINDOW, LONG_PTR(hwnd), 0);
}
// Signal an EC_REPAINT to the filter graph. This can be used to have data
// sent to us. For example when a video window is first displayed it may
// not have an image to display, at which point it signals EC_REPAINT. The
// filtergraph will either pause the graph if stopped or if already paused
// it will call put_CurrentPosition of the current position. Setting the
// current position to itself has the stream flushed and the image resent
#define RLOG(_x_) DbgLog((LOG_TRACE,1,TEXT(_x_)));
void CAudioSwitchRenderer::SendRepaint()
{
CAutoLock cSampleLock(&m_RendererLock);
ASSERT(m_pInputPin[m_inputSelected]);
// We should not send repaint notifications when...
// - An end of stream has been notified
// - Our input pin is being flushed
// - The input pin is not connected
// - We have aborted a video playback
// - There is a repaint already sent
if (m_bAbort == FALSE)
{
if (m_pInputPin[m_inputSelected]->IsConnected() == TRUE)
{
if (m_pInputPin[m_inputSelected]->IsFlushing() == FALSE)
{
if (IsEndOfStream() == FALSE)
{
if (m_bRepaintStatus == TRUE)
{
for (int i = 0;i < 16;i++)
{
IPin *pPin = (IPin *) m_pInputPin[i];
if (!pPin) continue;
NotifyEvent(EC_REPAINT, (LONG_PTR) pPin, 0);
SetRepaintStatus(FALSE);
RLOG("Sending repaint");
}
}
}
}
}
}
}
// When a video window detects a display change (WM_DISPLAYCHANGE message) it
// can send an EC_DISPLAY_CHANGED event code along with the renderer pin. The
// filtergraph will stop everyone and reconnect our input pin. As we're then
// reconnected we can accept the media type that matches the new display mode
// since we may no longer be able to draw the current image type efficiently
BOOL CAudioSwitchRenderer::OnDisplayChange()
{
// Ignore if we are not connected yet
CAutoLock cSampleLock(&m_RendererLock);
int n = 0;
for (int i = 0;i < 16;i++)
if (!m_pInputPin[i] || m_pInputPin[i]->IsConnected() == FALSE) n++;
if (n == 16)
return FALSE;
RLOG("Notification of EC_DISPLAY_CHANGE");
// Pass our input pin as parameter on the event
for (int i = 0;i < 16;i++)
if (m_pInputPin[i] && m_pInputPin[i]->IsConnected())
{
IPin *pPin = (IPin *) m_pInputPin[i];
m_pInputPin[i]->AddRef();
NotifyEvent(EC_DISPLAY_CHANGED, (LONG_PTR) pPin, 0);
SetAbortSignal(TRUE);
ClearPendingSample();
m_pInputPin[i]->Release();
}
return TRUE;
}
// Called just before we start drawing.
// Store the current time in m_trRenderStart to allow the rendering time to be
// logged. Log the time stamp of the sample and how late it is (neg is early)
void CAudioSwitchRenderer::OnRenderStart(IMediaSample *pMediaSample)
{
#ifdef PERF
REFERENCE_TIME trStart, trEnd;
pMediaSample->GetTime(&trStart, &trEnd);
MSR_INTEGER(m_idBaseStamp, (int)trStart); // dump low order 32 bits
m_pClock->GetTime(&m_trRenderStart);
MSR_INTEGER(0, (int)m_trRenderStart);
REFERENCE_TIME trStream;
trStream = m_trRenderStart - m_tStart; // convert reftime to stream time
MSR_INTEGER(0, (int)trStream);
const int trLate = (int)(trStream - trStart);
MSR_INTEGER(m_idBaseAccuracy, trLate / 10000); // dump in mSec
#endif
} // OnRenderStart
// Called directly after drawing an image.
// calculate the time spent drawing and log it.
void CAudioSwitchRenderer::OnRenderEnd(IMediaSample *pMediaSample)
{
#ifdef PERF
REFERENCE_TIME trNow;
m_pClock->GetTime(&trNow);
MSR_INTEGER(0, (int)trNow);
int t = (int)((trNow - m_trRenderStart) / 10000); // convert UNITS->msec
MSR_INTEGER(m_idBaseRenderTime, t);
#endif
} // OnRenderEnd
void CAudioSwitchRenderer::SetSelectedInput(int n)
{
if (m_inputSelected == n) return ;
if (n > 15 || n < 0) return ;
ClearPendingSample();
m_inputSelected = n;
GetSelectedPin()->NotifyMediaType();
}
int CAudioSwitchRenderer::GetSelectedInput()
{
return m_inputSelected;
}
int CAudioSwitchRenderer::GetConnectedInputsCount()
{
int n = 0;
for (int i = 0;i < 16;i++)
{
if (m_pInputPin[i] && m_pInputPin[i]->IsConnected()) n++;
}
return n;
}
// Constructor must be passed the base renderer object
CAudioSwitchRendererInputPin::CAudioSwitchRendererInputPin(CAudioSwitchRenderer *pRenderer,
HRESULT *phr,
LPCWSTR pPinName) :
CBaseInputPin(NAME("Renderer pin"),
pRenderer,
&pRenderer->m_InterfaceLock,
(HRESULT *) phr,
pPinName)
{
m_pRenderer = pRenderer;
ASSERT(m_pRenderer);
}
// Signals end of data stream on the input pin
STDMETHODIMP CAudioSwitchRendererInputPin::EndOfStream()
{
HRESULT hr = NOERROR;
if (m_pRenderer->GetSelectedPin() == this)
{
CAutoLock cRendererLock(&m_pRenderer->m_InterfaceLock);
CAutoLock cSampleLock(&m_pRenderer->m_RendererLock);
// Make sure we're streaming ok
hr = CheckStreaming();
if (hr != NOERROR)
{
return hr;
}
// Pass it onto the renderer
hr = m_pRenderer->EndOfStream();
}
if (SUCCEEDED(hr))
{
hr = CBaseInputPin::EndOfStream();
}
return hr;
}
// Signals start of flushing on the input pin - we do the final reset end of
// stream with the renderer lock unlocked but with the interface lock locked
// We must do this because we call timeKillEvent, our timer callback method
// has to take the renderer lock to serialise our state. Therefore holding a
// renderer lock when calling timeKillEvent could cause a deadlock condition
STDMETHODIMP CAudioSwitchRendererInputPin::BeginFlush()
{
if (m_pRenderer->GetSelectedPin() == this)
{
CAutoLock cRendererLock(&m_pRenderer->m_InterfaceLock);
{
CAutoLock cSampleLock(&m_pRenderer->m_RendererLock);
CBaseInputPin::BeginFlush();
m_pRenderer->BeginFlush();
}
return m_pRenderer->ResetEndOfStream();
}
else return CBaseInputPin::BeginFlush();
}
// Signals end of flushing on the input pin
STDMETHODIMP CAudioSwitchRendererInputPin::EndFlush()
{
HRESULT hr = NOERROR;
if (m_pRenderer->GetSelectedPin() == this)
{
CAutoLock cRendererLock(&m_pRenderer->m_InterfaceLock);
CAutoLock cSampleLock(&m_pRenderer->m_RendererLock);
hr = m_pRenderer->EndFlush();
}
if (SUCCEEDED(hr))
{
hr = CBaseInputPin::EndFlush();
}
return hr;
}
// Pass the sample straight through to the renderer object
STDMETHODIMP CAudioSwitchRendererInputPin::Receive(IMediaSample *pSample)
{
if (m_pRenderer->GetSelectedPin() != this)
return NOERROR;
return m_pRenderer->Receive(pSample);
}
// Called when the input pin is disconnected
HRESULT CAudioSwitchRendererInputPin::BreakConnect()
{
if (m_pRenderer->GetSelectedPin() == this)
{
HRESULT hr = m_pRenderer->BreakConnect();
if (FAILED(hr))
{
return hr;
}
}
return CBaseInputPin::BreakConnect();
}
// Called when the input pin is connected
HRESULT CAudioSwitchRendererInputPin::CompleteConnect(IPin *pReceivePin)
{
if (m_pRenderer->GetSelectedPin() == this)
{
HRESULT hr = m_pRenderer->CompleteConnect(pReceivePin);
if (FAILED(hr))
{
return hr;
}
}
return CBaseInputPin::CompleteConnect(pReceivePin);
}
// Give the pin id of our one and only pin
STDMETHODIMP CAudioSwitchRendererInputPin::QueryId(LPWSTR *Id)
{
CheckPointer(Id, E_POINTER);
*Id = (LPWSTR)CoTaskMemAlloc(8);
if (*Id == NULL)
{
return E_OUTOFMEMORY;
}
StringCbCopyW(*Id, 8, m_pName);
return NOERROR;
}
// Will the filter accept this media type
HRESULT CAudioSwitchRendererInputPin::CheckMediaType(const CMediaType *pmt)
{
return m_pRenderer->CheckMediaType(pmt);
}
// Called when we go paused or running
HRESULT CAudioSwitchRendererInputPin::Active()
{
return m_pRenderer->Active();
}
// Called when we go into a stopped state
HRESULT CAudioSwitchRendererInputPin::Inactive()
{
return m_pRenderer->Inactive();
}
// Tell derived classes about the media type agreed
HRESULT CAudioSwitchRendererInputPin::SetMediaType(const CMediaType *pmt)
{
HRESULT hr = CBaseInputPin::SetMediaType(pmt);
if (FAILED(hr))
{
return hr;
}
m_mt = *pmt;
if (m_pRenderer->GetSelectedPin() != this)
return NOERROR;
return m_pRenderer->SetMediaType(pmt);
}
HRESULT CAudioSwitchRendererInputPin::NotifyMediaType()
{
if (m_pRenderer->GetSelectedPin() != this)
return NOERROR;
return m_pRenderer->SetMediaType(&m_mt);
}