mirror of https://github.com/tdwg/dwc.git
404 lines
19 KiB
Python
404 lines
19 KiB
Python
# Script to build Markdown pages that provide term metadata for complex vocabularies
|
|
# Steve Baskauf 2020-08-12 CC0
|
|
# This script merges static Markdown header and footer documents with term information tables (in Markdown) generated from data in the rs.tdwg.org repo from the TDWG Github site
|
|
|
|
import re
|
|
import requests # best library to manage HTTP transactions
|
|
import csv # library to read/write/parse CSV files
|
|
import json # library to convert JSON to Python data structures
|
|
import pandas as pd
|
|
|
|
# -----------------
|
|
# Configuration section
|
|
# -----------------
|
|
|
|
# !!!! NOTE !!!!
|
|
# There is not currently an example of a complex vocabulary that has the column headers
|
|
# used in the sample files. In order to test this script, it uses the Audubon Core files,
|
|
# which have headers that differ from the samples. So throughout the code, there are
|
|
# pairs of lines where the default header names are commented out and the Audubon Core
|
|
# headers are not. To build a page using the sample files, you will need to reverse the
|
|
# commenting of these pairs.
|
|
|
|
# This is the base URL for raw files from the branch of the repo that has been pushed to GitHub
|
|
githubBaseUri = 'https://raw.githubusercontent.com/tdwg/rs.tdwg.org/master/'
|
|
|
|
headerFileName = 'termlist-header.md'
|
|
footerFileName = 'termlist-footer.md'
|
|
outFileName = '../docs/list/index.md'
|
|
|
|
# This is a Python list of the database names of the term lists to be included in the document.
|
|
termLists = ['terms', 'iri', 'dc-for-dwc', 'dcterms-for-dwc']
|
|
#termLists = ['pathway']
|
|
|
|
# NOTE! There may be problems unless every term list is of the same vocabulary type since the number of columns will differ
|
|
# However, there probably aren't any circumstances where mixed types will be used to generate the same page.
|
|
vocab_type = 1 # 1 is simple vocabulary, 2 is simple controlled vocabulary, 3 is c.v. with broader hierarchy
|
|
|
|
# Terms in large vocabularies like Darwin and Audubon Cores may be organized into categories using tdwgutility_organizedInClass
|
|
# If so, those categories can be used to group terms in the generated term list document.
|
|
organized_in_categories = True
|
|
|
|
# If organized in categories, the display_order list must contain the IRIs that are values of tdwgutility_organizedInClass
|
|
# If not organized into categories, the value is irrelevant. There just needs to be one item in the list.
|
|
display_order = ['', 'http://purl.org/dc/elements/1.1/', 'http://purl.org/dc/terms/', 'http://rs.tdwg.org/dwc/terms/Occurrence', 'http://rs.tdwg.org/dwc/terms/Organism', 'http://rs.tdwg.org/dwc/terms/MaterialSample', 'http://rs.tdwg.org/dwc/terms/Event', 'http://purl.org/dc/terms/Location', 'http://rs.tdwg.org/dwc/terms/GeologicalContext', 'http://rs.tdwg.org/dwc/terms/Identification', 'http://rs.tdwg.org/dwc/terms/Taxon', 'http://rs.tdwg.org/dwc/terms/MeasurementOrFact', 'http://rs.tdwg.org/dwc/terms/ResourceRelationship', 'http://rs.tdwg.org/dwc/terms/attributes/UseWithIRI']
|
|
display_label = ['Record level', 'Dublin Core legacy namespace', 'Dublin Core terms namespace', 'Occurrence', 'Organism', 'Material Sample', 'Event', 'Location', 'Geological Context', 'Identification', 'Taxon', 'Measurement or Fact', 'Resource Relationship', 'IRI-value terms']
|
|
display_comments = ['','','','','','','','','','','','','','']
|
|
display_id = ['record_level', 'dc', 'dcterms', 'occurrence', 'organism', 'material_sample', 'event', 'location', 'geological_context', 'identification', 'taxon', 'measurement_or_fact', 'resource_relationship', 'use_with_iri']
|
|
|
|
#display_order = ['']
|
|
#display_label = ['Vocabulary'] # these are the section labels for the categories in the page
|
|
#display_comments = [''] # these are the comments about the category to be appended following the section labels
|
|
#display_id = ['Vocabulary'] # these are the fragment identifiers for the associated sections for the categories
|
|
|
|
# ---------------
|
|
# Function definitions
|
|
# ---------------
|
|
|
|
# replace URL with link
|
|
#
|
|
def createLinks(text):
|
|
def repl(match):
|
|
if match.group(1)[-1] == '.':
|
|
return '<a href="' + match.group(1)[:-1] + '">' + match.group(1)[:-1] + '</a>.'
|
|
return '<a href="' + match.group(1) + '">' + match.group(1) + '</a>'
|
|
|
|
pattern = '(https?://[^\s,;\)"]*)'
|
|
result = re.sub(pattern, repl, text)
|
|
return result
|
|
|
|
# ---------------
|
|
# Retrieve term list metadata from GitHub
|
|
# ---------------
|
|
|
|
print('Retrieving term list metadata from GitHub')
|
|
term_lists_info = []
|
|
|
|
frame = pd.read_csv(githubBaseUri + 'term-lists/term-lists.csv', na_filter=False)
|
|
for termList in termLists:
|
|
term_list_dict = {'list_iri': termList}
|
|
term_list_dict = {'database': termList}
|
|
for index,row in frame.iterrows():
|
|
if row['database'] == termList:
|
|
term_list_dict['pref_ns_prefix'] = row['vann_preferredNamespacePrefix']
|
|
term_list_dict['pref_ns_uri'] = row['vann_preferredNamespaceUri']
|
|
term_list_dict['list_iri'] = row['list']
|
|
term_lists_info.append(term_list_dict)
|
|
print(term_lists_info)
|
|
print()
|
|
|
|
# ---------------
|
|
# Create metadata table and populate using data from namespace databases in GitHub
|
|
# ---------------
|
|
|
|
# Create column list
|
|
column_list = ['pref_ns_prefix', 'pref_ns_uri', 'term_localName', 'label', 'rdfs_comment', 'dcterms_description', 'examples', 'term_modified', 'term_deprecated', 'rdf_type', 'replaces_term', 'replaces1_term']
|
|
#column_list = ['pref_ns_prefix', 'pref_ns_uri', 'term_localName', 'label', 'definition', 'usage', 'notes', 'term_modified', 'term_deprecated', 'type']
|
|
if vocab_type == 2:
|
|
column_list += ['controlled_value_string']
|
|
elif vocab_type == 3:
|
|
column_list += ['controlled_value_string', 'skos_broader']
|
|
if organized_in_categories:
|
|
column_list.append('tdwgutility_organizedInClass')
|
|
column_list.append('version_iri')
|
|
|
|
print('Retrieving metadata about terms from all namespaces from GitHub')
|
|
# Create list of lists metadata table
|
|
table_list = []
|
|
for term_list in term_lists_info:
|
|
# retrieve versions metadata for term list
|
|
versions_url = githubBaseUri + term_list['database'] + '-versions/' + term_list['database'] + '-versions.csv'
|
|
versions_df = pd.read_csv(versions_url, na_filter=False)
|
|
|
|
# retrieve current term metadata for term list
|
|
data_url = githubBaseUri + term_list['database'] + '/' + term_list['database'] + '.csv'
|
|
frame = pd.read_csv(data_url, na_filter=False)
|
|
for index,row in frame.iterrows():
|
|
row_list = [term_list['pref_ns_prefix'], term_list['pref_ns_uri'], row['term_localName'], row['label'], row['rdfs_comment'], row['dcterms_description'], row['examples'], row['term_modified'], row['term_deprecated'], row['rdf_type'], row['replaces_term'], row['replaces1_term']]
|
|
#row_list = [term_list['pref_ns_prefix'], term_list['pref_ns_uri'], row['term_localName'], row['label'], row['definition'], row['usage'], row['notes'], row['term_modified'], row['term_deprecated'], row['type']]
|
|
if vocab_type == 2:
|
|
row_list += [row['controlled_value_string']]
|
|
elif vocab_type == 3:
|
|
if row['skos_broader'] =='':
|
|
row_list += [row['controlled_value_string'], '']
|
|
else:
|
|
row_list += [row['controlled_value_string'], term_list['pref_ns_prefix'] + ':' + row['skos_broader']]
|
|
if organized_in_categories:
|
|
row_list.append(row['tdwgutility_organizedInClass'])
|
|
|
|
# Borrowed terms really don't have implemented versions. They may be lacking values for version_status.
|
|
# In their case, their version IRI will be omitted.
|
|
found = False
|
|
for vindex, vrow in versions_df.iterrows():
|
|
if vrow['term_localName']==row['term_localName'] and vrow['version_status']=='recommended':
|
|
found = True
|
|
version_iri = vrow['version']
|
|
# NOTE: the current hack for non-TDWG terms without a version is to append # to the end of the term IRI
|
|
if version_iri[len(version_iri)-1] == '#':
|
|
version_iri = ''
|
|
if not found:
|
|
version_iri = ''
|
|
row_list.append(version_iri)
|
|
|
|
table_list.append(row_list)
|
|
|
|
# Turn list of lists into dataframe
|
|
terms_df = pd.DataFrame(table_list, columns = column_list)
|
|
|
|
terms_sorted_by_label = terms_df.sort_values(by='label')
|
|
#terms_sorted_by_localname = terms_df.sort_values(by='term_localName')
|
|
|
|
# This makes sort case insensitive
|
|
terms_sorted_by_localname = terms_df.iloc[terms_df.term_localName.str.lower().argsort()]
|
|
#terms_sorted_by_localname
|
|
print('done retrieving')
|
|
print()
|
|
|
|
# ---------------
|
|
# generate the index of terms grouped by category and sorted alphabetically by lowercase term local name
|
|
# ---------------
|
|
|
|
print('Generating term index by CURIE')
|
|
text = '### 3.1 Index By Term Name\n\n'
|
|
text += '(See also [3.2 Index By Label](#32-index-by-label))\n\n'
|
|
|
|
text += '**Classes**\n'
|
|
text += '\n'
|
|
for row_index,row in terms_sorted_by_localname.iterrows():
|
|
if row['rdf_type'] == 'http://www.w3.org/2000/01/rdf-schema#Class':
|
|
curie = row['pref_ns_prefix'] + ":" + row['term_localName']
|
|
curie_anchor = curie.replace(':','_')
|
|
text += '[' + curie + '](#' + curie_anchor + ') |\n'
|
|
text = text[:len(text)-2] # remove final trailing vertical bar and newline
|
|
text += '\n\n' # put back removed newline
|
|
|
|
for category in range(0,len(display_order)):
|
|
text += '**' + display_label[category] + '**\n'
|
|
text += '\n'
|
|
if organized_in_categories:
|
|
filtered_table = terms_sorted_by_localname[terms_sorted_by_localname['tdwgutility_organizedInClass']==display_order[category]]
|
|
filtered_table.reset_index(drop=True, inplace=True)
|
|
else:
|
|
filtered_table = terms_sorted_by_localname
|
|
|
|
for row_index,row in filtered_table.iterrows():
|
|
if row['rdf_type'] != 'http://www.w3.org/2000/01/rdf-schema#Class':
|
|
curie = row['pref_ns_prefix'] + ":" + row['term_localName']
|
|
curie_anchor = curie.replace(':','_')
|
|
text += '[' + curie + '](#' + curie_anchor + ') |\n'
|
|
text = text[:len(text)-2] # remove final trailing vertical bar and newline
|
|
text += '\n\n' # put back removed newline
|
|
|
|
index_by_name = text
|
|
|
|
#print(index_by_name)
|
|
print()
|
|
|
|
# ---------------
|
|
# generate the index of terms by label
|
|
# ---------------
|
|
|
|
print('Generating term index by label')
|
|
text = '\n\n'
|
|
|
|
# Comment out the following two lines if there is no index by local names
|
|
text = '### 3.2 Index By Label\n\n'
|
|
text += '(See also [3.1 Index By Term Name](#31-index-by-term-name))\n\n'
|
|
|
|
text += '**Classes**\n'
|
|
text += '\n'
|
|
for row_index,row in terms_sorted_by_label.iterrows():
|
|
if row['rdf_type'] == 'http://www.w3.org/2000/01/rdf-schema#Class':
|
|
curie_anchor = row['pref_ns_prefix'] + "_" + row['term_localName']
|
|
text += '[' + row['label'] + '](#' + curie_anchor + ') |\n'
|
|
text = text[:len(text)-2] # remove final trailing vertical bar and newline
|
|
text += '\n\n' # put back removed newline
|
|
|
|
for category in range(0,len(display_order)):
|
|
if organized_in_categories:
|
|
text += '**' + display_label[category] + '**\n'
|
|
text += '\n'
|
|
filtered_table = terms_sorted_by_label[terms_sorted_by_label['tdwgutility_organizedInClass']==display_order[category]]
|
|
filtered_table.reset_index(drop=True, inplace=True)
|
|
else:
|
|
filtered_table = terms_sorted_by_label
|
|
|
|
for row_index,row in filtered_table.iterrows():
|
|
if row_index == 0 or (row_index != 0 and row['label'] != filtered_table.iloc[row_index - 1].loc['label']): # this is a hack to prevent duplicate labels
|
|
if row['rdf_type'] != 'http://www.w3.org/2000/01/rdf-schema#Class':
|
|
curie_anchor = row['pref_ns_prefix'] + "_" + row['term_localName']
|
|
text += '[' + row['label'] + '](#' + curie_anchor + ') |\n'
|
|
text = text[:len(text)-2] # remove final trailing vertical bar and newline
|
|
text += '\n\n' # put back removed newline
|
|
|
|
index_by_label = text
|
|
print()
|
|
|
|
#print(index_by_label)
|
|
|
|
decisions_df = pd.read_csv('https://raw.githubusercontent.com/tdwg/rs.tdwg.org/master/decisions/decisions-links.csv', na_filter=False)
|
|
|
|
# ---------------
|
|
# generate a table for each term, with terms grouped by category
|
|
# ---------------
|
|
|
|
print('Generating terms table')
|
|
# generate the Markdown for the terms table
|
|
text = '## 4 Vocabulary\n'
|
|
if True:
|
|
filtered_table = terms_sorted_by_localname
|
|
|
|
#for category in range(0,len(display_order)):
|
|
# if organized_in_categories:
|
|
# text += '### 4.' + str(category + 1) + ' ' + display_label[category] + '\n'
|
|
# text += '\n'
|
|
# text += display_comments[category] # insert the comments for the category, if any.
|
|
# filtered_table = terms_sorted_by_localname[terms_sorted_by_localname['tdwgutility_organizedInClass']==display_order[category]]
|
|
# filtered_table.reset_index(drop=True, inplace=True)
|
|
# else:
|
|
# filtered_table = terms_sorted_by_localname
|
|
|
|
for row_index,row in filtered_table.iterrows():
|
|
text += '<table>\n'
|
|
curie = row['pref_ns_prefix'] + ":" + row['term_localName']
|
|
curieAnchor = curie.replace(':','_')
|
|
text += '\t<thead>\n'
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<th colspan="2"><a id="' + curieAnchor + '"></a>Term Name ' + curie + '</th>\n'
|
|
text += '\t\t</tr>\n'
|
|
text += '\t</thead>\n'
|
|
text += '\t<tbody>\n'
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Term IRI</td>\n'
|
|
uri = row['pref_ns_uri'] + row['term_localName']
|
|
text += '\t\t\t<td><a href="' + uri + '">' + uri + '</a></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Modified</td>\n'
|
|
text += '\t\t\t<td>' + row['term_modified'] + '</td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
if row['version_iri'] != '':
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Term version IRI</td>\n'
|
|
text += '\t\t\t<td><a href="' + row['version_iri'] + '">' + row['version_iri'] + '</a></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Label</td>\n'
|
|
text += '\t\t\t<td>' + row['label'] + '</td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
if row['term_deprecated'] != '':
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td></td>\n'
|
|
text += '\t\t\t<td><strong>This term is deprecated and should no longer be used.</strong></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
for dep_index,dep_row in filtered_table.iterrows():
|
|
if dep_row['replaces_term'] == uri:
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Is replaced by</td>\n'
|
|
text += '\t\t\t<td><a href="#' + dep_row['pref_ns_prefix'] + "_" + dep_row['term_localName'] + '">' + dep_row['pref_ns_uri'] + dep_row['term_localName'] + '</a></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
if dep_row['replaces1_term'] == uri:
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Is replaced by</td>\n'
|
|
text += '\t\t\t<td><a href="#' + dep_row['pref_ns_prefix'] + "_" + dep_row['term_localName'] + '">' + dep_row['pref_ns_uri'] + dep_row['term_localName'] + '</a></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Definition</td>\n'
|
|
text += '\t\t\t<td>' + row['rdfs_comment'] + '</td>\n'
|
|
#text += '\t\t\t<td>' + row['definition'] + '</td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
if row['dcterms_description'] != '':
|
|
#if row['notes'] != '':
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Notes</td>\n'
|
|
text += '\t\t\t<td>' + createLinks(row['dcterms_description']) + '</td>\n'
|
|
#text += '\t\t\t<td>' + createLinks(row['notes']) + '</td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
if row['examples'] != '':
|
|
#if row['usage'] != '':
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Examples</td>\n'
|
|
text += '\t\t\t<td>' + createLinks(row['examples']) + '</td>\n'
|
|
#text += '\t\t\t<td>' + createLinks(row['usage']) + '</td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
if vocab_type == 2 or vocab_type ==3: # controlled vocabulary
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Controlled value</td>\n'
|
|
text += '\t\t\t<td>' + row['controlled_value_string'] + '</td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
if vocab_type == 3 and row['skos_broader'] != '': # controlled vocabulary with skos:broader relationships
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Has broader concept</td>\n'
|
|
curieAnchor = row['skos_broader'].replace(':','_')
|
|
text += '\t\t\t<td><a href="#' + curieAnchor + '">' + row['skos_broader'] + '</a></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Type</td>\n'
|
|
if row['rdf_type'] == 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property':
|
|
#if row['type'] == 'http://www.w3.org/1999/02/22-rdf-syntax-ns#Property':
|
|
text += '\t\t\t<td>Property</td>\n'
|
|
elif row['rdf_type'] == 'http://www.w3.org/2000/01/rdf-schema#Class':
|
|
#elif row['type'] == 'http://www.w3.org/2000/01/rdf-schema#Class':
|
|
text += '\t\t\t<td>Class</td>\n'
|
|
elif row['rdf_type'] == 'http://www.w3.org/2004/02/skos/core#Concept':
|
|
#elif row['type'] == 'http://www.w3.org/2004/02/skos/core#Concept':
|
|
text += '\t\t\t<td>Concept</td>\n'
|
|
else:
|
|
text += '\t\t\t<td>' + row['rdf_type'] + '</td>\n' # this should rarely happen
|
|
#text += '\t\t\t<td>' + row['type'] + '</td>\n' # this should rarely happen
|
|
text += '\t\t</tr>\n'
|
|
|
|
# Look up decisions related to this term
|
|
for drow_index,drow in decisions_df.iterrows():
|
|
if drow['linked_affected_resource'] == uri:
|
|
text += '\t\t<tr>\n'
|
|
text += '\t\t\t<td>Executive Committee decision</td>\n'
|
|
text += '\t\t\t<td><a href="http://rs.tdwg.org/decisions/' + drow['decision_localName'] + '">http://rs.tdwg.org/decisions/' + drow['decision_localName'] + '</a></td>\n'
|
|
text += '\t\t</tr>\n'
|
|
|
|
text += '\t</tbody>\n'
|
|
text += '</table>\n'
|
|
text += '\n'
|
|
text += '\n'
|
|
term_table = text
|
|
print('done generating')
|
|
print()
|
|
|
|
#print(term_table)
|
|
|
|
# ---------------
|
|
# Merge term table with header and footer Markdown, then save file
|
|
# ---------------
|
|
|
|
print('Merging term table with header and footer and saving file')
|
|
#text = index_by_label + term_table
|
|
text = index_by_name + index_by_label + term_table
|
|
|
|
# read in header and footer, merge with terms table, and output
|
|
|
|
headerObject = open(headerFileName, 'rt', encoding='utf-8')
|
|
header = headerObject.read()
|
|
headerObject.close()
|
|
|
|
footerObject = open(footerFileName, 'rt', encoding='utf-8')
|
|
footer = footerObject.read()
|
|
footerObject.close()
|
|
|
|
output = header + text + footer
|
|
outputObject = open(outFileName, 'wt', encoding='utf-8')
|
|
outputObject.write(output)
|
|
outputObject.close()
|
|
|
|
print('done')
|
|
|