added scripts for Vision API/OCR
This commit is contained in:
parent
4cdd4f46ec
commit
20cedc6b19
|
@ -2,6 +2,9 @@
|
|||
.Rhistory
|
||||
.RData
|
||||
.Ruserdata
|
||||
.Renviron
|
||||
|
||||
*.jpg
|
||||
*.csv
|
||||
*.csv
|
||||
images/*.*
|
||||
ocr_text/*.*
|
|
@ -0,0 +1,93 @@
|
|||
# A script to use Google Cloud Vision to OCR/parse/mangle Collections label-images
|
||||
# Note!
|
||||
# - this may take a few seconds per label-image
|
||||
# - running >1000 API calls/month incurs a fee
|
||||
# (c) 2019 The Field Museum - MIT License (https://opensource.org/licenses/MIT)
|
||||
# https://github.com/fieldmuseum/Collections-OCR
|
||||
|
||||
library(googleCloudVisionR) # NOTE - requires API Key / Service Account
|
||||
library(tidyr)
|
||||
library(readr)
|
||||
library(stringr)
|
||||
library(magick)
|
||||
|
||||
# get list of local JPG & JPEG image files [REVERT]
|
||||
imagelist <- list.files(path = "images/", pattern = ".jp|.JP")
|
||||
imagenames <- gsub(".jp.*|.JP.*", "", imagelist)
|
||||
|
||||
|
||||
# # Prompt user for input/output batch directory names?
|
||||
# image_dir <- readline("Paste the path for the image directory: ")
|
||||
|
||||
|
||||
# Retrieve OCR text ####
|
||||
|
||||
# Setup table for OCRed text
|
||||
imagesOCR <- data.frame("image" = rep("", NROW(textlist)),
|
||||
"line_count" = rep("", NROW(textlist)),
|
||||
"text" = rep("", NROW(textlist)),
|
||||
stringsAsFactors = F)
|
||||
|
||||
imagesOCR$line_count <- as.integer(imagesOCR$line_count)
|
||||
|
||||
|
||||
# setup output dir
|
||||
# # add image_dir if use prompt above
|
||||
if (!dir.exists("ocr_text")) { # paste0(image_dir, "_out")
|
||||
dir.create("ocr_text") # paste0(image_dir, "_out")
|
||||
} else {
|
||||
print("output directory exists")
|
||||
}
|
||||
|
||||
|
||||
# Loop through each label-image
|
||||
for (i in 1:NROW(imagelist)) {
|
||||
|
||||
# # If files are over 20MB, uncomment this to lower quality + avoid error?
|
||||
# ### NOTE! This will overwrite image with lower-quality file.
|
||||
#
|
||||
# if (file.info(paste0("images/", imagelist[i]))$size > 20000000) {
|
||||
# image_write(image_read(paste0("images/", imagelist[i])),
|
||||
# path = paste0("images/", imagelist[i]),
|
||||
# quality = 80)
|
||||
|
||||
# OCR image
|
||||
# CHECK/FIX THIS FXN ####
|
||||
ocr_list <- gcv_get_image_annotations(imagePaths = paste0("images/", imagelist[i]),
|
||||
feature = "DOCUMENT_TEXT_DETECTION",
|
||||
savePath = paste0("ocr_text/",
|
||||
imagenames[i], "_text.csv"))
|
||||
|
||||
# Add raw text to dataframe
|
||||
imagesOCR$text[i] <- read_file(ocr_list$local_path) # CHECK/FIX THIS PATH ####
|
||||
|
||||
# Add filename & count of lines in row
|
||||
imagesOCR$image[i] <- imagelist[i]
|
||||
imagesOCR$line_count[i] <- str_count(ocr_list$local_path, "\n+")
|
||||
|
||||
# show progress
|
||||
print(paste(i, " - ", Sys.time()))
|
||||
|
||||
# rate limit to max of 240/min (Vision API limit = 1800/min)
|
||||
Sys.sleep(0.25)
|
||||
|
||||
}
|
||||
|
||||
|
||||
# split text lines to separate columns
|
||||
ocrText <- separate(imagesOCR, text,
|
||||
into = paste0("Line",
|
||||
seq(1:max(imagesOCR$line_count, na.rm = T))),
|
||||
# into = seq(1:20), # if need consistent NCOL
|
||||
sep = "(\n)+",
|
||||
extra = "merge", fill = "right")
|
||||
|
||||
|
||||
# export CSV
|
||||
write.csv(ocrText,
|
||||
paste0("ocrText-",
|
||||
gsub("\\s+|:", "", Sys.time()),
|
||||
# image_dir,
|
||||
".csv"),
|
||||
na = "",
|
||||
row.names = F)
|
|
@ -0,0 +1,123 @@
|
|||
# A script to use Google apps to OCR/parse/mangle Collections label-images
|
||||
# Note - this may take a few seconds per label-image
|
||||
# (c) 2019 The Field Museum - MIT License (https://opensource.org/licenses/MIT)
|
||||
# https://github.com/fieldmuseum/Collections-OCR
|
||||
|
||||
library(googledrive)
|
||||
library(tidyr)
|
||||
library(readr)
|
||||
library(stringr)
|
||||
|
||||
|
||||
# get list of local JPG & JPEG image files [REVERT]
|
||||
imagelist <- list.files(path = "images/", pattern = ".jp|.JP")
|
||||
imagenames <- gsub(".jp.*|.JP.*", "", imagelist)
|
||||
|
||||
|
||||
# NOTE - update path to appropriate google folder
|
||||
googleFolder <- "https://drive.google.com/drive/folders/1fOI5JC1naQtfBZ2mXlWFlBOq2bKN17KA"
|
||||
# googleFolder <- readline("Paste the URL to a googledrive here: ")
|
||||
|
||||
|
||||
# Upload & OCR ####
|
||||
|
||||
# Loop through each label-image
|
||||
for (i in 1:NROW(imagelist)) {
|
||||
|
||||
# Setup Google Doc for image
|
||||
drive_upload(media = paste0("images/", imagelist[i]),
|
||||
path = as_id(googleFolder),
|
||||
name = paste0(imagenames[i], "_text"),
|
||||
type = "document",
|
||||
overwrite = FALSE)
|
||||
|
||||
print(paste(i, " - ", Sys.time()))
|
||||
|
||||
}
|
||||
|
||||
|
||||
# get list of OCR text files
|
||||
filelist <- drive_ls(path = as_id(googleFolder),
|
||||
recursive = FALSE)
|
||||
|
||||
textlist <- filelist[grepl("_text", filelist$name)==TRUE,]
|
||||
|
||||
|
||||
# Retrieve OCR text ####
|
||||
|
||||
# Setup table for OCRed text
|
||||
imagesOCR <- data.frame("image" = rep("", NROW(textlist)),
|
||||
"line_count" = rep("", NROW(textlist)),
|
||||
"text" = rep("", NROW(textlist)),
|
||||
stringsAsFactors = F)
|
||||
|
||||
imagesOCR$line_count <- as.integer(imagesOCR$line_count)
|
||||
|
||||
if (!dir.exists("ocr_text")) {
|
||||
dir.create("ocr_text")
|
||||
} else {
|
||||
print("'ocr_text' directory exists")
|
||||
}
|
||||
|
||||
# Download the OCR'ed label-images
|
||||
for (i in 1:NROW(textlist)) {
|
||||
|
||||
# Setup Google Doc for image
|
||||
dllist <- drive_download(file = as_id(textlist$id[i]),
|
||||
path = paste0("ocr_text/", textlist$name),
|
||||
type = "txt",
|
||||
overwrite = FALSE)
|
||||
|
||||
# OCR the image to text
|
||||
imagesOCR$text[i] <- read_file(dllist$local_path)
|
||||
|
||||
# include filename & count of lines in row
|
||||
imagesOCR$image[i] <- imagelist[i]
|
||||
imagesOCR$line_count[i] <- str_count(ocrText, "\n+")
|
||||
|
||||
# show progress
|
||||
print(paste(i, " - ", Sys.time()))
|
||||
|
||||
}
|
||||
|
||||
|
||||
# # loop through each label-image
|
||||
# for (i in 1:NROW(imagelist)) {
|
||||
#
|
||||
# # # Setup Google Doc for image
|
||||
# # drive_put(media = "images/PE78981_label.jpg",
|
||||
# # path = as_id("https://drive.google.com/drive/folders/1fOI5JC1naQtfBZ2mXlWFlBOq2bKN17KA"),
|
||||
# # name = "test_text",
|
||||
# # type = "document")
|
||||
#
|
||||
# # OCR the image to text
|
||||
# ocrText <- image_read(paste0("images/", imagelist[i])) %>%
|
||||
# image_ocr(language = c("eng", "lat", "deu"))
|
||||
# imagesOCR$text[i] <- ocrText
|
||||
#
|
||||
# # include filename & count of lines in row
|
||||
# imagesOCR$image[i] <- imagelist[i]
|
||||
# imagesOCR$line_count[i] <- str_count(ocrText, "\n+")
|
||||
#
|
||||
# # show progress
|
||||
# print(paste(i, " - ", Sys.time()))
|
||||
#
|
||||
# }
|
||||
|
||||
|
||||
# split text lines to separate columns
|
||||
ocrText <- separate(imagesOCR, text,
|
||||
into = paste0("Line",
|
||||
seq(1:max(imagesOCR$line_count, na.rm = T))),
|
||||
# into = seq(1:20), # if need consistent NCOL
|
||||
sep = "(\n)+",
|
||||
extra = "merge", fill = "right")
|
||||
|
||||
|
||||
# export CSV
|
||||
write.csv(ocrText,
|
||||
paste0("ocrText-",
|
||||
gsub("\\s+|:", "", Sys.time()),
|
||||
".csv"),
|
||||
na = "",
|
||||
row.names = F)
|
Loading…
Reference in New Issue